Promising results using silver-releasing scaffolds in MRSA infection of bone

January 4, 2017, Mary Ann Liebert, Inc
Tissue Engineering is the preeminent, biomedical journal advancing the field with cutting-edge research and applications on all aspects of tissue growth and regeneration. Credit: Mary Ann Liebert, Inc., publishers

Researchers developed a biocompatible scaffold capable of controlled-release of silver ions and have shown in a new study that it can inhibit infection of bone by methicillin-resistant Staphylococcus aureus, known as MRSA. The antimicrobial properties of silver combined with a biodegradable scaffold that can be seeded with bone-forming stem cells offers a potential implant system for treating and preventing bone infection, as described in an article published in Tissue Engineering, Part A.

Mahsa Mohiti-Asli, PhD and coauthors from University of North Carolina at Chapel Hill, North Carolina State University (Raleigh), Silpakorn University (Nakornpathom, Thailand), and University of Missouri (Columbia), present an experiment in which they seeded bone-forming on three-dimensional scaffolds either with or without MRSA. The researchers assessed bacterial biofilm formation to determine the effect of on (osteomyelitis). They report their findings in the article entitled "Evaluation of Silver Ion-Releasing Scaffolds in a 3D Coculture System of MRSA and Human Adipose-Derived Stem Cells for Their Potential Use in Treatment or Prevention of Osteomyelitis."

"Hybrid therapeutic approaches such as this combination of a regenerative and anti-infective platform are transforming our attack on complex musculoskeletal diseases," says Co-Editor-in-Chief Peter C. Johnson, MD, Principal, MedSurgPI, LLC and President and CEO, Scintellix, LLC, Raleigh, NC.

Research reported in this publication was supported by the Clinical and Translational Science Awards (CTSA) program of the National Institutes of Health under grant numbers 550KR71418 and 550KR61325, and the National Institute of Biomedical Imaging and Bioengineering under grant number 1R03EB008790. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.

Explore further: Researchers propose mechanism for spread of metastatic breast cancer to bone

More information: Mahsa Mohiti-Asli et al. Evaluation of Silver Ion-Releasing Scaffolds in a 3D Coculture System of MRSA and Human Adipose-Derived Stem Cells for Their Potential Use in Treatment or Prevention of Osteomyelitis, Tissue Engineering Part A (2016). DOI: 10.1089/ten.tea.2016.0063

Related Stories

Researchers propose mechanism for spread of metastatic breast cancer to bone

November 4, 2016
New research explains how metastatic breast cancer cells might use bone marrow-derived mesenchymal stem cells (MSCs) to help them spread to bone tissue. A study using a 3D scaffold model has shown that breast tumor-derived ...

Researchers describe bone marrow stem cell population with potential for repeat transplantation

November 9, 2016
A new study demonstrates that non-blood cell forming stem cells present in human bone marrow play an important role in maintaining the hematopoietic microenvironment, and these stromal cells appear to retain full self-renewal ...

Immunization for MRSA on the horizon

February 14, 2012
Methicillin resistant staph aureus (MRSA) infections are resistant to antibiotics and can cause a myriad of problems -- bone erosion, or osteomyelitis, which shorten the effective life of an implant and greatly hinder replacement ...

Lung cell phenotype reverts when seeded onto decellularized lung matrix

May 18, 2015
Researchers seeded type II lung epithelial cells into a decellularized lung matrix to study their function and report the unexpected finding that instead of differentiating into type I lung cells, they instead transitioned ...

Researchers reveal how an inflammatory response to ceramic scaffolds promotes bone regeneration

July 29, 2016
In their mission to design new biomaterials that promote tissue regeneration, Drexel University researchers have identified how inflammation, when precisely controlled, is crucial to bone repair.

Recommended for you

Researchers devise decoy molecule to block pain where it starts

January 16, 2018
For anyone who has accidentally injured themselves, Dr. Zachary Campbell not only sympathizes, he's developing new ways to blunt pain.

Scientists unleash power of genetic data to identify disease risk

January 16, 2018
Massive banks of genetic information are being harnessed to shed new light on modifiable health risks that underlie common diseases.

Blood-vessel-on-a-chip provides insight into new anti-inflammatory drug candidate

January 15, 2018
One of the most important and fraught processes in the human body is inflammation. Inflammatory responses to injury or disease are crucial for recruiting the immune system to help the body heal, but inflammation can also ...

Molecule produced by fat cells reduces obesity and diabetes in mice

January 15, 2018
UC San Francisco researchers have discovered a new biological pathway in fat cells that could explain why some people with obesity are at high risk for metabolic diseases such as type 2 diabetes. The new findings—demonstrated ...

Obese fat becomes inflamed and scarred, which may make weight loss harder

January 12, 2018
The fat of obese people becomes distressed, scarred and inflamed, which can make weight loss more difficult, research at the University of Exeter has found.

Optimized human peptide found to be an effective antibacterial agent

January 11, 2018
A team of researchers in the Netherlands has developed an effective antibacterial ointment based on an optimized human peptide. In their paper published in the journal Science Translational Medicine, the group describes developing ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.