Promising results using silver-releasing scaffolds in MRSA infection of bone

January 4, 2017
Tissue Engineering is the preeminent, biomedical journal advancing the field with cutting-edge research and applications on all aspects of tissue growth and regeneration. Credit: Mary Ann Liebert, Inc., publishers

Researchers developed a biocompatible scaffold capable of controlled-release of silver ions and have shown in a new study that it can inhibit infection of bone by methicillin-resistant Staphylococcus aureus, known as MRSA. The antimicrobial properties of silver combined with a biodegradable scaffold that can be seeded with bone-forming stem cells offers a potential implant system for treating and preventing bone infection, as described in an article published in Tissue Engineering, Part A.

Mahsa Mohiti-Asli, PhD and coauthors from University of North Carolina at Chapel Hill, North Carolina State University (Raleigh), Silpakorn University (Nakornpathom, Thailand), and University of Missouri (Columbia), present an experiment in which they seeded bone-forming on three-dimensional scaffolds either with or without MRSA. The researchers assessed bacterial biofilm formation to determine the effect of on (osteomyelitis). They report their findings in the article entitled "Evaluation of Silver Ion-Releasing Scaffolds in a 3D Coculture System of MRSA and Human Adipose-Derived Stem Cells for Their Potential Use in Treatment or Prevention of Osteomyelitis."

"Hybrid therapeutic approaches such as this combination of a regenerative and anti-infective platform are transforming our attack on complex musculoskeletal diseases," says Co-Editor-in-Chief Peter C. Johnson, MD, Principal, MedSurgPI, LLC and President and CEO, Scintellix, LLC, Raleigh, NC.

Research reported in this publication was supported by the Clinical and Translational Science Awards (CTSA) program of the National Institutes of Health under grant numbers 550KR71418 and 550KR61325, and the National Institute of Biomedical Imaging and Bioengineering under grant number 1R03EB008790. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.

Explore further: Researchers propose mechanism for spread of metastatic breast cancer to bone

More information: Mahsa Mohiti-Asli et al. Evaluation of Silver Ion-Releasing Scaffolds in a 3D Coculture System of MRSA and Human Adipose-Derived Stem Cells for Their Potential Use in Treatment or Prevention of Osteomyelitis, Tissue Engineering Part A (2016). DOI: 10.1089/ten.tea.2016.0063

Related Stories

Immunization for MRSA on the horizon

February 14, 2012

Methicillin resistant staph aureus (MRSA) infections are resistant to antibiotics and can cause a myriad of problems -- bone erosion, or osteomyelitis, which shorten the effective life of an implant and greatly hinder replacement ...

Recommended for you

'CYCLOPS' algorithm spots daily rhythms in cells

April 25, 2017

Humans, like virtually all other complex organisms on Earth, have adapted to their planet's 24-hour cycle of sunlight and darkness. That circadian rhythm is reflected in human behavior, of course, but also in the molecular ...

Discovery offers new hope to repair spinal cord injuries

April 24, 2017

Scientists at the Gladstone Institutes created a special type of neuron from human stem cells that could potentially repair spinal cord injuries. These cells, called V2a interneurons, transmit signals in the spinal cord to ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.