Roots of Alzheimer's disease can extend as far back as the womb

January 27, 2017
Dr. Weihong Song is a Professor of Psychiatry at University of British Columbia. Credit: University of British Columbia

Biochemical reactions that cause Alzheimer's disease could begin in the womb or just after birth if the fetus or newborn does not get enough vitamin A, according to new research from the University of British Columbia.

These new findings, based on studies of genetically-engineered mice, also demonstrate that supplements given to newborns with low levels of A could be effective in slowing the .

"Our study clearly shows that marginal deficiency of vitamin A, even as early as in pregnancy, has a detrimental effect on brain development and has long-lasting effect that may facilitate Alzheimer's disease in later life," said Dr. Weihong Song, a professor of psychiatry and Canada Research Chair in Alzheimer's Disease.

For this research, Song built on previous studies that have linked low levels of vitamin A with cognitive impairments. In collaboration with Dr. Tingyu Li and others at Children's Hospital of Chongqing Medical University, they examined the effects of vitamin A deprivation in the womb and infancy on Alzheimer's model mice. These early developmental stages are crucial periods during which brain tissue is "programmed" for the rest of a person's life.

The researchers found that even a mild vitamin A deficiency increased the production of amyloid beta, the protein that forms plaques that smother and ultimately kill neurons in Alzheimer's disease. He also found that these mice, when deprived of vitamin A, performed worse as adults on a standard test of learning and memory.

Even when the mice deprived of vitamin A in the womb were given a normal diet as pups, they performed worse than mice who received a normal amount of the nutrient in the womb but were deprived after birth. In other words, the damage had already been done in the womb.

Still, Song and his collaborators also showed that some reversal is possible: Mice who were deprived in utero but then given supplements immediately after birth performed better on the tests than mice who weren't given such supplements.

"In some cases, providing supplements to the newborn Alzheimer's model could reduce the level and improve learning and memory deficits," said Song. "It's a matter of the earlier, the better."

The study, published today in Acta Neuropathologica, also included new evidence in humans of the vitamin A-dementia connection in later years. Examining 330 elderly people in Chongqing, Song and his collaborators found that 75 per cent of those with either mild or significant vitamin A deficiency had cognitive impairment, compared to 47 per cent of those with normal vitamin A levels.

However, Dr. Song cautions against overreacting to this news. Vitamin A deficiency, though common in many low-income regions of the world, is rare in North America, and excess intake of the nutrient could be harmful. Pregnant women in particular should not take excessive vitamin A supplements. A balanced diet is the best way to ensure adequate levels of the nutrient.

Explore further: Certain factors affect vitamin D levels in children with chronic kidney disease

Related Stories

Certain factors affect vitamin D levels in children with chronic kidney disease

June 16, 2016
Researchers have identified certain modifiable and non-modifiable factors associated with vitamin D deficiency in children with chronic kidney disease (CKD). The findings, which appear in an upcoming issue of the Clinical ...

Vitamin D deficiency increases risk of chronic headache

January 4, 2017
Vitamin D deficiency may increase the risk of chronic headache, according to a new study from the University of Eastern Finland. The findings were published in Scientific Reports.

Low vitamin D causes brain damage

December 2, 2013
A new study led by University of Kentucky researchers suggests that a diet low in vitamin D causes damage to the brain.

Treatment with vitamin C dissolves toxic protein aggregates in Alzheimer's disease

August 18, 2011
Researchers at Lund University have discovered a new function for vitamin C. Treatment with vitamin C can dissolve the toxic protein aggregates that build up in the brain in Alzheimer's disease. The research findings are ...

Low vitamin D linked to dry eye syndromes

February 10, 2016
(HealthDay)—Vitamin D deficiency is associated with dry eye and impaired tear function, according to a study published in the January issue of the International Journal of Rheumatic Diseases.

Obesity leads to 'silent' vitamin A deficiency in organs

November 6, 2015
Obesity impairs the body's ability to use vitamin A appropriately and leads to deficiencies of the vitamin in major organs, according to new research conducted at Weill Cornell Medicine.

Recommended for you

Alzheimer's Tau protein forms toxic complexes with cell membranes

November 22, 2017
The brains of patients with Alzheimer's disease contain characteristic tangles inside neurons. These tangles are formed when a protein called Tau aggregates into twisted fibrils. As a result, the neurons' transport systems ...

Researchers reveal new details on aged brain, Alzheimer's and dementia

November 21, 2017
In a comprehensive analysis of samples from 107 aged human brains, researchers at the Allen Institute for Brain Science, UW Medicine and Kaiser Permanente Washington Health Research Institute have discovered details that ...

Dementia study sheds light on how damage spreads through brain

November 20, 2017
Insights into how a key chemical disrupts brain cells in a common type of dementia have been revealed by scientists.

Researchers describe new biology of Alzheimer's disease

November 20, 2017
In a new study, researchers from Boston University School of Medicine (BUSM) describe a unique model for the biology of Alzheimer's disease (AD) which may lead to an entirely novel approach for treating the disease. The findings ...

Study shows video games could cut dementia risk in seniors

November 16, 2017
Could playing video games help keep the brain agile as we age?

New player in Alzheimer's disease pathogenesis identified

November 14, 2017
Scientists at Sanford Burnham Prebys Medical Discovery Institute (SBP) have shown that a protein called membralin is critical for keeping Alzheimer's disease pathology in check. The study, published in Nature Communications, ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.