Research team identifies role for a microRNA involved in prostate cancer metastasis

January 25, 2017
Micrograph showing prostatic acinar adenocarcinoma (the most common form of prostate cancer) Credit: Wikipedia

Metastasis, or spread of a tumor from the site of origin to additional organs, causes the vast majority of cancer-related deaths, but our understanding of the molecular mechanisms behind metastasis remains limited. A research team led by Dean Tang, PhD, Chair of the Department of Pharmacology and Therapeutics at Roswell Park Cancer Institute, examined the multistep process that leads to metastasis and their work, which illuminates the role of prostate cancer stem cells that promote tumor growth and metastasis, has been published online ahead of print in the journal Nature Communications.

MicroRNAs (miRNAs) are small genetic molecules that play an essential role in regulating many aspects of cancer cell behavior. When they performed a screening of the miRNA library, Dr. Tang and colleagues found that, surprisingly, only a few miRNAs are commonly deficient or not expressed in prostate .

The team found that one specific miRNA molecule, miR-141, not only inhibited but significantly retarded cancer metastasis in several preclinical prostate cancer models. Taken together with the findings from previous studies reporting the molecule's powerful tumor-suppression capability, the current study demonstrates the potential of miR-141 as an inhibitor of prostate cancer cell invasion and metastasis, and suggests that synthetic miR-141 may be developed as a "replacement" therapeutic to target prostate cancer metastasis.

"This study represents the most comprehensive investigation to date of the role of the miR-141 molecule in regulating prostate cancer stem cells and their role in metastasis," says Dr. Tang, senior author of the new study. "These preliminary findings suggest that miR-141 may suppress the metastatic cascade at an early stage and that the overexpression of miR-141 in cells results in less . Our observations provide a rationale for developing these targeted miRNA molecules into novel antitumor and antimetastasis replacement therapies."

Credit: Roswell Park Cancer Institute

Explore further: Predicting and preventing prostate cancer spread

More information: Can Liu et al. MicroRNA-141 suppresses prostate cancer stem cells and metastasis by targeting a cohort of pro-metastasis genes, Nature Communications (2017). DOI: 10.1038/ncomms14270

Related Stories

Predicting and preventing prostate cancer spread

January 25, 2017
University of Adelaide researchers have uncovered a new pathway which regulates the spread of prostate cancer around the body.

Mouse model shows that Notch activation can drive metastatic prostate cancer

June 13, 2016
Notch signaling is involved in prostate cancer and, in a paper published today in The Journal of Clinical Investigation, researchers from Baylor College of Medicine and other institutions have shown that, in a mouse model ...

Research helps explain why androgen-deprivation therapy doesn't work for many prostate cancers

January 5, 2017
Metastatic prostate cancer, or prostate cancer that has spread to other organs, is incurable. In new research published in the journal Science, Roswell Park Cancer Institute scientists have identified two gatekeeper genes ...

Cancer cells metastasize by hitching a ride on platelets

September 8, 2016
Metastasis of cancer cells to sites distant from the primary tumor is the leading cause of cancer-related death, and there is growing evidence that platelets aid the dissemination of cancer cells.

Uncovering the mechanisms that support the spread of ovarian cancer

October 10, 2016
A very high mortality rate is associated with ovarian cancer, in part due to difficulties in detecting and diagnosing the disease at early stages before tumors have spread, or metastasized, to other locations in the body.

Recommended for you

Clinical trial suggests new cell therapy for relapsed leukemia patients

November 20, 2017
A significant proportion of children and young adults with treatment-resistant B-cell leukemia who participated in a small study achieved remission with the help of a new form of gene therapy, according to researchers at ...

Researchers discover a new target for 'triple-negative' breast cancer

November 20, 2017
So-called "triple-negative" breast cancer is a particularly aggressive and difficult-to-treat form. It accounts for only about 10 percent of breast cancer cases, but is responsible for about 25 percent of breast cancer fatalities.

Study reveals new mechanism used by cancer cells to disarm attacking immune cells

November 20, 2017
A new study by researchers at The Ohio State University Comprehensive Cancer Center - James Cancer Hospital and Solove Research Institute (OSUCCC - James) identifies a substance released by pancreatic cancer cells that protects ...

Cell-weighing method could help doctors choose cancer drugs

November 20, 2017
Doctors have many drugs available to treat multiple myeloma, a type of blood cancer. However, there is no way to predict, by genetic markers or other means, how a patient will respond to a particular drug. This can lead to ...

Lung cancer triggers pulmonary hypertension

November 17, 2017
Shortness of breath and respiratory distress often increase the suffering of advanced-stage lung cancer patients. These symptoms can be triggered by pulmonary hypertension, as scientists at the Max Planck Institute for Heart ...

Researchers discover an Achilles heel in a lethal leukemia

November 16, 2017
Researchers have discovered how a linkage between two proteins in acute myeloid leukemia enables cancer cells to resist chemotherapy and showed that disrupting the linkage could render the cells vulnerable to treatment. St. ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.