New discovery could be a major advance for neurological diseases

February 13, 2017, University of Bristol
Credit: Wikimedia Commons

The discovery of a new mechanism that controls the way nerve cells in the brain communicate with each other to regulate our learning and long-term memory could have major benefits to understanding how the brain works and what goes wrong in neurodegenerative disorders such as epilepsy and dementia. The breakthrough, published in Nature Neuroscience, was made by scientists at the University of Bristol and the University of Central Lancashire. The findings will have far-reaching implications in many aspects of neuroscience.

The human contains around 100-billion , each of which makes about 10,000 connections to other cells, called . Synapses are constantly transmitting information to, and receiving information from other nerve cells. A process, called long-term potentiation (LTP), increases the strength of information flow across synapses. Lots of synapses communicating between different nerve cells form networks and LTP intensifies the connectivity of the cells in the network to make information transfer more efficient. This LTP mechanism is how the brain operates at the cellular level to allow us to learn and remember. However, when these processes go wrong they can lead to neurological and neurodegenerative disorders.

Precisely how LTP is initiated is a major question in neuroscience. Traditional LTP is regulated by the activation of special proteins at synapses called NMDA receptors. This study, by Professor Jeremy Henley and co-workers reports a new type of LTP that is controlled by kainate receptors.

This is an important advance as it highlights the flexibility in the way synapses are controlled and nerve cells communicate. This, in turn, raises the possibility of targeting this new pathway to develop therapeutic strategies for diseases like dementia, in which there is too little synaptic transmission and LTP, and epilepsy where there is too much inappropriate synaptic transmission and LTP.

Jeremy Henley, Professor of Molecular Neuroscience in the University's School of Biochemistry in the Faculty of Medical and Veterinary Sciences, said: "These discoveries represent a significant advance and will have far-reaching implications for the understanding of memory, cognition, developmental plasticity and neuronal network formation and stabilisation. In summary, we believe that this is a groundbreaking study that opens new lines of inquiry which will increase understanding of the molecular details of synaptic function in health and disease."

Dr Milos Petrovic, co-author of the study and Reader in Neuroscience at the University of Central Lancashire added: "Untangling the interactions between the signal receptors in the brain not only tells us more about the inner workings of a healthy brain, but also provides a practical insight into what happens when we form new memories. If we can preserve these signals it may help protect against brain diseases.

"This is certainly an extremely exciting discovery and something that could potentially impact the global population. We have discovered potential new drug targets that could help to cure the devastating consequences of dementias, such as Alzheimer's disease. Collaborating with researchers across the world in order to identify new ways to fight disease like this is what world-class scientific research is all about, and we look forward to continuing our work in this area."

Explore further: Study adds new evidence linking brain mutation to autism, epilepsy and other neurological disorders

More information: Metabotropic action of postsynaptic kainate receptors triggers hippocampal long-term potentiation, Nature Neuroscience, nature.com/articles/doi:10.1038/nn.4505

Related Stories

Study adds new evidence linking brain mutation to autism, epilepsy and other neurological disorders

July 15, 2015
Findings, published today [15 Jul] in Nature Communications, reveal the extent a mutation associated with autism and epilepsy plays in impairing a biochemical process in the brain. The study, led by University of Bristol ...

Key mechanism behind brain connectivity and memory revealed

September 2, 2016
Memory loss in mice has been successfully reversed following the discovery of new information about a key mechanism underlying the loss of nerve connectivity in the brain, say UCL researchers.

Scientists apply new imaging tool to common brain disorders

July 20, 2016
A Yale-led team of researchers developed a new approach to scanning the brain for changes in synapses that are associated with common brain disorders. The technique may provide insights into the diagnosis and treatment of ...

Minding the gap: International team defines spaces through which nerve cells communicate

December 16, 2015
In a report published in the journal Neuron, an international team of researchers defined the makeup of the cellular structures through which nerve cells communicate with each other. These "synaptic clefts" are the small ...

The significance of non-motor microtubule-associated protein in maintaining synaptic plasticity thorough a novel mechani

February 5, 2016
NMDA glutamate receptors, which function as receptors that bond with glutamates, are known to be deeply involved in animal memory and learning. In order for memories to be created inside the brain, these NMDA glutamate receptors ...

Recommended for you

Wiring diagram of the brain provides a clearer picture of brain scan data

December 14, 2018
Already affecting more than five million Americans older than 65, Alzheimer's disease is on the rise and expected to impact more than 13 million people by 2050. Over the last three decades, researchers have relied on neuroimaging—brain ...

Scientists identify method to study resilience to pain

December 14, 2018
Scientists at the Yale School of Medicine and Veterans Affairs Connecticut Healthcare System have successfully demonstrated that it is possible to pinpoint genes that contribute to inter-individual differences in pain.

Parents' brain activity 'echoes' their infant's brain activity when they play together

December 13, 2018
When infants are playing with objects, their early attempts to pay attention to things are accompanied by bursts of high-frequency activity in their brain. But what happens when parents play together with them? New research, ...

In the developing brain, scientists find roots of neuropsychiatric diseases

December 13, 2018
The most comprehensive genomic analysis of the human brain ever undertaken has revealed new insights into the changes it undergoes through development, how it varies among individuals, and the roots of neuropsychiatric illnesses ...

Researchers discover abundant source for neuronal cells

December 13, 2018
USC researchers seeking a way to study genetic activity associated with psychiatric disorders have discovered an abundant source of human cells—the nose.

Researchers find the cause of and cure for brain injury associated with gut condition

December 13, 2018
Using a mouse model of necrotizing enterocolitis (NEC)—a potentially fatal condition that causes a premature infant's gut to suddenly die—researchers at Johns Hopkins say they have uncovered the molecular causes of the ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.