Researchers identify human brain processes critical to short-term memory

February 20, 2017, Cedars-Sinai Medical Center
Credit: Wikimedia Commons

Cedars-Sinai neuroscientists have uncovered processes involved in how the human brain creates and maintains short-term memories.

"This study is the first clear demonstration of precisely how cells work to create and recall short-term memories," said Ueli Rutishauser, PhD, associate professor of Neurosurgery in the Cedars-Sinai Department of Neurosurgery and the study's senior author. "Confirmation of this process and the specific brain regions involved is a critical step in developing meaningful treatments for disorders that affect millions of Americans."

The study's findings, published online Feb. 20 and in the April print edition of Nature Neuroscience, involve a type of brain cell, called a persistently active neuron, that is vital for supporting short-term memory. Results indicate that this specific type of neurons remain active for several seconds when a person is required to memorize an object or image and recall it at a later time.

The findings reveal critical new information on how the human brain stores and maintains short-term memories - the ability to remember ideas, thoughts, images and objects during a time frame of seconds to minutes. Short-term memory is essential for making decisions and mental calculations.

"Because impaired short-term memory severely weakens someone's ability to complete everyday tasks, it is essential to develop a better understanding of this process so new treatments for memory disorders can be developed," said Jan Kaminski, PhD, a neuroscientist at Cedars-Sinai and lead author of the study.

Researchers found persistently active neurons in the medial frontal lobe as well as the medial temporal lobe. The neurons remained active even after the patient stopped looking at an image or object. Until now, the medial temporal lobe was thought to be involved only in the formation of new long-term memories. Now, however, the new findings show that both areas of the brain are critical for maintaining short-term memory and rely upon the ongoing activity of the neurons for memorization.

During the study, a team of Cedars-Sinai neurosurgeons implanted electrodes to precisely locate the source of seizures in 13 epilepsy patients. Investigators then studied the electrical activity of individual neurons while patients performed a memory test.

During the test, patients viewed a sequence of three images, followed by a two-to-three-second delay. Then patients were shown another image and were asked to decide whether they had previously seen the image.

"A surprising finding of this new study is that some of the persistently active neurons were only active if the patient memorized a specific image," Kaminski said. "For example, the researchers discovered a neuron that reacted every time the patient memorized an image of Han Solo, a character in the movie Star Wars, but not any other memory."

Another key finding of the study was a correlation between the strength of the neurons' activity and the ability to later make use of the memory.

"We noticed that the larger the increase in activity, the more likely the patient was to remember the image. In contrast, if the neuron's activity was weak, the patient forgot the image and thus lost the memory," said Adam N. Mamelak, MD, professor of Neurosurgery, director of Functional Neurosurgery at Cedars-Sinai and a co-author of the study.

Keith L. Black, MD, chair of the Department of Neurosurgery at Cedars-Sinai, said the breakthrough can be credited to the partnership between neurosurgery and neurology clinicians working with neuroscientists.

"This unique collaboration allows us to discover the mechanisms of memory in the human brain," Black said. "This is key for moving closer to finding treatments for , epilepsy and other diseases."

Rutishauser said a next step is understanding how multiple areas of the brain work together to support short-term memory.

"Now that specific neurons that support have been discovered, we have a way to study their interaction systematically," he said.

Explore further: Been there? Done that? If you are sure, thank your 'memory cells'

More information: Persistently active neurons in human medial frontal and medial temporal lobe support working memory, Nature Neuroscience, nature.com/articles/doi:10.1038/nn.4509

Related Stories

Been there? Done that? If you are sure, thank your 'memory cells'

June 9, 2015
The witness on the stand says he saw the accused at the scene of the crime. Is he sure? How sure? The jury's verdict could hinge on that level of certainty.

Neurons in brain's 'face recognition center' respond differently in patients with autism

November 20, 2013
In what are believed to be the first studies of their kind, Cedars-Sinai researchers recording the real-time firing of individual nerve cells in the brain found that a specific type of neuron in a structure called the amygdala ...

Scientists have decoded the functioning of the short-term memory

September 26, 2014
School children and university students are often big fans of the short-term memory – not least when they have to cram large volumes of information on the eve of an exam. Although its duration is brief, short term memory ...

Scientists find a defect responsible for memory impairment in aging

March 3, 2015
Scientists from the Florida campus of The Scripps Research Institute have discovered a mechanism that causes long-term memory loss due to age in Drosophila, the common fruit fly, a widely recognized substitute for human memory ...

Why all-nighters don't work: Sleep and memory go hand-in-hand

January 23, 2015
Want to ace that test tomorrow? Here's a tip: Put down the coffee and hit the sack.

Brain study sheds light on how new memories are formed

July 1, 2015
In the first study of its kind, UCLA and United Kingdom researchers found that neurons in a specific brain region play a key role in rapidly forming memories about every day events, a finding that may result in a better understanding ...

Recommended for you

Use of electrical brain stimulation to foster creativity has sweeping implications

September 18, 2018
What is creativity, and can it be enhanced—safely—in a person who needs a boost of imagination? Georgetown experts debate the growing use of electrical devices that stimulate brain tissue, and conclude there is potential ...

Engineers decode conversations in brain's motor cortex

September 18, 2018
How does your brain talk with your arm? The body doesn't use English, or any other spoken language. Biomedical engineers are developing methods for decoding the conversation, by analyzing electrical patterns in the motor ...

Team identifies brain's lymphatic vessels as new avenue to treat multiple sclerosis

September 17, 2018
Lymphatic vessels that clean the brain of harmful material play a crucial role in the development and progression of multiple sclerosis, new research from the University of Virginia School of Medicine suggests. The vessels ...

Circuit found for brain's statistical inference about motion

September 17, 2018
As the eye tracks a bird flying past, the muscles that pan the eyeballs to keep the target in focus set their pace not only on the speed they see, but also on a reasonable estimate of the speed they expect from having watched ...

Mouse study reveals that activity, not rest, speeds recovery after brain injury

September 17, 2018
When recovering from a brain injury, getting back in the swing of things may be more effective than a prolonged period of rest, according to a new Columbia study in mice. These findings offer a compelling example of the brain's ...

Fine-tuned sense of smell relies on timing

September 17, 2018
If you can tell the difference between a merlot and a cabernet franc just by smell, it's probably all in the timing.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.