Optogenetics used to kick start gene that plays role in neural defects

February 14, 2017 by Brian Wallheimer, Purdue University
This stylistic diagram shows a gene in relation to the double helix structure of DNA and to a chromosome (right). The chromosome is X-shaped because it is dividing. Introns are regions often found in eukaryote genes that are removed in the splicing process (after the DNA is transcribed into RNA): Only the exons encode the protein. The diagram labels a region of only 55 or so bases as a gene. In reality, most genes are hundreds of times longer. Credit: Thomas Splettstoesser/Wikipedia/CC BY-SA 4.0

Purdue University and Indiana University School of Medicine scientists were able to force an epigenetic reaction that turns on and off a gene known to determine the fate of the neural stem cells, a finding that could lead to new therapeutics in the fight against select cancers and neural diseases.

Joseph Irudayaraj, a Purdue professor of agricultural and biological engineering, and Feng Zhou, a professor and neuroscientist at the Indiana University School of Medicine, have developed an optogenetic toolbox that brings together proteins and enzymes that methylate or demethylate a gene called Ascl1. Alteration of the in a specific gene with the optogenetic proteins would allow scientists to turn that gene on or off and produce desirable neurons among other cell types.

"If we can alter the epigenetic state at a specific location of a gene, then we can turn that gene on or off for personalized medicine," Irudayaraj said.

The findings, published in the journal Nature Scientific Reports, have implications for a number of diseases and maladies.

"By the ability of determining the fate of , one day it may be applied to produce neurons in Down syndrome, or reduce malignancy of glioma, a cancer in the brain," Zhou said. "By altering the methylation marks at a specific location of the gene, we have shown that the state of a cell can be altered."

Epigenetics is the study of changes in chemical modifications on top of a gene based on external or environmental factors rather than changes in a DNA sequence. Optogenetics involves the utilization of to alter the genetic or epigenetic profile in a cell or organism.

The researchers' findings detail the ability to modify the methylation profile of the Ascl1 gene in a site-specific manner, thereby controlling . DNA methylation involves adding a group to the cytosine base of DNA, utilizing a family of enzymes called DNA methyltransferases (DNMTs). DNA demethylation is the removal of a from the cytosine bases using enzymes called Ten-Eleven Translocation, or TET.

Irudayaraj and his team attached these cytosine-modifying enzymes DNMT3A/TET to light-sensitive protein pairs to demonstrate site-specific methylation/demethylation. Zhou and his team introduced those light-sensitive proteins into and found that when they shined a blue light, the methylation modifying enzyme DNMT3A/TET and the gene target came together, adjusting the methylation of the gene.

"It's almost like putting a worm on a hook, and putting it in the water to catch a fish when it comes along. Once the light goes on, the hook and the fish come together and you catch the fish," Irudayaraj said.

The ability to activate or deactivate a gene, specifically those that suppress or promote a disease condition, could be a valuable tool for cancer therapeutics as well. The team plans to take the findings, done on neural stem cells, to mouse model systems.

"We want to apply this to therapeutics or toxicology," Irudayaraj said. "Essentially the applications are very broad. It can also include nervous system malfunctions, including addiction."

Explore further: Epigenetics and neural cell death

More information: Chiao-Ling Lo et al. Epigenetic Editing of Ascl1 Gene in Neural Stem Cells by Optogenetics, Scientific Reports (2017). DOI: 10.1038/srep42047

Related Stories

Epigenetics and neural cell death

October 26, 2016
Ludwig-Maximilians-Universitaet researchers have demonstrated how deregulation of an epigenetic mechanism that is active only in the early phases of neurogenesis triggers the subsequent death of neural cells.

Permanent changes in brain genes may not be so permanent after all

January 27, 2014
In normal development, all cells turn off genes they don't need, often by attaching a chemical methyl group to the DNA, a process called methylation. Historically, scientists believed methyl groups could only stick to a particular ...

TET proteins drive early neurogenesis

December 7, 2016
The fate of stem cells is determined by series of choices that sequentially narrow their available options until stem cells' offspring have found their station and purpose in the body. Their decisions are guided in part by ...

Why brain neurons in Parkinson's disease stop benefiting from levodopa

July 28, 2016
Though the drug levodopa can dramatically improve Parkinson's disease symptoms, within five years one-half of the patients using L-DOPA develop an irreversible condition—involuntary repetitive, rapid and jerky movements. ...

Recommended for you

Variants in non-coding DNA contribute to inherited autism risk

April 19, 2018
In recent years, researchers have firmly established that gene mutations appearing for the first time, called de novo mutations, contribute to approximately one-third of cases of autism spectrum disorder (ASD). In a new study, ...

Researchers discover link between gene variation and language

April 18, 2018
What shapes the basic features of a language?

Natural selection still at work in humans

April 18, 2018
Evolution has shaped the human race, with University of Queensland researchers finding signatures of natural selection in the genome that influence traits associated with fertility and heart function.

Gene therapy for beta-thalassemia safe, effective in people

April 18, 2018
In a powerful example of bench-to-bedside science showing how observations made in the lab can spark life-altering therapies in clinic, an international team of clinician-investigators has announced that gene therapy for ...

Potential lines of attack against prostate cancer

April 17, 2018
Researchers from The University of East Anglia (UEA) have contributed to the world's largest study into genes that drive prostate cancer – identifying 80 molecular weaknesses that could be targeted by drugs to treat the ...

Epstein-Barr virus linked to seven serious diseases

April 16, 2018
A far-reaching study conducted by scientists at Cincinnati Children's reports that the Epstein-Barr virus (EBV)—best known for causing mononucleosis—also increases the risks for some people of developing seven other major ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.