Study shows how separate visual features are integrated in the thalamus

February 23, 2017, Friedrich Miescher Institute for Biomedical Research
How the thalamus helps us to see
Ganglion cells traced and color-coded based on morphological type.

Botond Roska and his team at the FMI have investigated how visual features, extracted in the eye, are combined in the thalamus, the second stage of visual processing in the brain. They have shown that the function of the thalamus is not merely to relay information. Rather, synaptic connections between different types of retinal cells and individual thalamic cells permit the integration of different visual features—in some cases from both eyes.

The sensory thalamus, a small structure located between the brain stem and the cortex, is an important gateway to the brain. Sensory information-what we see, hear, taste or feel-first passes through the thalamus before being processed in higher brain areas and the sensory thalamus was long thought to be the brain's relay station. Recently, however, evidence has accumulated that the thalamus not only relays but also processes input. But it has not been clear what happens at the single cell level.

To address this question, Santiago Rompani, a postdoctoral fellow in Botond Roska's group, developed a sophisticated method using rabies virus to track individual of single thalamic cells in mice. In addition, Fiona Müllner, another postdoc in Roska's lab, developed robust statistical analysis to make sense of the data. They focused on an area known as the lateral geniculate nucleus (LGN), where input from the visual system converges. In the LGN, the axons of different types of make with thalamic neurons. Botond Roska, Senior group leader at the FMI comments: "This is the first time we've been able to trace neuronal connections of a single cell in such a deep structure of the brain."

Using this method, the scientists then showed that ganglion cells connect to thalamic cells in different modes. In the first mode, 1-5 ganglion cells, mostly of the same type, connect with one LGN cell. According to Roska, "This 'relay mode' is what we would have expected: Information from one type of ganglion cell transmitting one feature of the visual scene is further passed on."

Interestingly, two other less expected and more prominent modes were also identified. In the second mode, 6-36 ganglion cells of different types converge from one eye; in this case, the LGN cell receives and integrates information about different aspects of the visual scene before passing it on. A function that goes beyond a pure relay function. In the third mode, a subset of LGN cells receives direct input from up to 91 of different types from both eyes. "This was unexpected," says Roska. "How this integration functions and how it influences our perception remains to be elucidated."

Roska concludes: "We now think that the takes on a much broader role in sensory information processing, and that different degrees of specialization of add an additional layer to how we perceive our surroundings."

Explore further: Study provides up-close insight on connections between retina and thalamus

More information: Santiago B. Rompani et al. Different Modes of Visual Integration in the Lateral Geniculate Nucleus Revealed by Single-Cell-Initiated Transsynaptic Tracing, Neuron (2017). DOI: 10.1016/j.neuron.2017.01.028

Related Stories

Study provides up-close insight on connections between retina and thalamus

June 15, 2016
Crack open just about any biology textbook to read up on the thalamus, and you'll find that its function is mainly to serve as a relay station, handing off sensory input to the cerebral cortex for processing.

Neural connections mapped with unprecedented detail

July 4, 2016
A team of neuroscientists at the Champalimaud Centre for the Unknown, in Lisbon, has been able to map single neural connections over long distances in the brain. "These are the first measurements of neural inputs between ...

Neurons in the human eye are organized for error correction

November 17, 2016
Neurons found in the human eye naturally display a form of error correction in the collective visual signals they send to the brain, according to a new study in PLOS Computational Biology.

'Brainbow' reveals surprising data about visual connections in brain

August 27, 2015
Neuroscientists know that some connections in the brain are pruned through neural development. Function gives rise to structure, according to the textbooks. But scientists at the Virginia Tech Carilion Research Institute ...

Scientists discover previously unknown requirement for brain development

June 21, 2013
Scientists at the Salk Institute for Biological Studies have demonstrated that sensory regions in the brain develop in a fundamentally different way than previously thought, a finding that may yield new insights into visual ...

New function for rods in daylight

November 19, 2014
(Medical Xpress)—Vision – so crucial to human health and well-being – depends on job-sharing by just a few cell types, the rod cells and cone cells, in our retina. Botond Roska and his group have identified a novel ...

Recommended for you

How do we lose memory? A STEP at a time, researchers say

March 23, 2018
In mice, rats, monkeys, and people, aging can take its toll on cognitive function. A new study by researchers at Yale and Université de Montréal reveal there is a common denominator to the decline in all of these species—an ...

Brain's tiniest blood vessels trigger spinal motor neurons to develop

March 23, 2018
A new study has revealed that the human brain's tiniest blood vessels can activate genes known to trigger spinal motor neurons, prompting the neurons to grow during early development. The findings could provide insights into ...

Being hungry shuts off perception of chronic pain

March 22, 2018
Pain can be valuable. Without it, we might let our hand linger on a hot stove, for example. But longer-lasting pain, such as the inflammatory pain that can arise after injury, can be debilitating and costly, preventing us ...

From signal propagation to consciousness: New findings point to a potential connection

March 22, 2018
Researchers at New York University have discovered a novel mechanism through which information can be effectively transmitted across many areas in the brain—a finding that offers a potentially new way of understanding how ...

Using simplicity for complexity—new research sheds light on the perception of motion

March 22, 2018
A team of biologists has deciphered how neurons used in the perception of motion form in the brain of a fly —a finding that illustrates how complex neuronal circuits are constructed from simple developmental rules.

Focus on early stage of illness may be key to treating ALS, study suggests

March 22, 2018
A new kind of genetically engineered mouse and an innovation in how to monitor those mice during research have shed new light on the early development of an inherited form of amyotrophic lateral sclerosis (ALS).

1 comment

Adjust slider to filter visible comments by rank

Display comments: newest first

5 / 5 (1) Feb 23, 2017
Tracing dendrites and axons from neurons is open to the public at

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.