Witnessing the birth of a tiny RNA at brain synapses

February 13, 2017, Max Planck Society
Witnessing the birth of a tiny RNA at brain synapses
Time-lapse images of fluorescent pre–miR-181a  before and after synapse activation (yellow arrow). The microRNA matured within one second after synaptic activity. Credit: Sambandan et al, 2017

Proteins are the building blocks of all cells. They are made from messenger RNA (mRNA) molecules, which are copied from DNA in the nuclei of cells. All cells, including brain cells regulate the amount and kind of proteins they make with the help of very small "non-coding" RNAs, so-called microRNAs. Scientists from the Max Planck Institute for Brain Research and Goethe University in Frankfurt, respectively, now show that neurons move the site of microRNA maturation away from the cytoplasm out to the dendrites, thin processes, which are closer to where synapses are. This puts the newly born microRNA into much smaller environment with fewer mRNA target options.

microRNAs prevent the mRNA from being made into protein. They are made from larger precursor RNA molecules by several processing steps in the nucleus and cytoplasm. In individual , copy numbers of most microRNAs in single cells are relatively low in contrast to potential mRNA targets within where copy numbers can be up to 10,000 molecules. As such, the absolute number of potential mRNA targets within a cell for a single microRNA species could be very high (e.g. millions), raising the question of how a microRNA can effectively regulate a particular target mRNA.

Scientists from the lab of Erin Schuman and Alexander Heckel discovered how have solved the abundance problem: microRNAs do not mature in the cytoplasm as is the case in other cells, but rather in the dendrites. "We tested our hypothesis by using a clever design of a fluorescent molecular reporter, modelled after an immature microRNA", Heckel says. "We filled neurons with this probe and then stimulated individual synapses. To our surprise, we could then see bright fluorescent spots at the stimulated synapses, showing us the birth of the microRNA. We then saw that the microRNA target was downregulated in the neighborhood of the dendrite where the microRNA was born."

An important feature of neurons is their ability to communicate with one another at synapses, the points of contact between two cells. Synapses use proteins that are synthesized close-by to fuel communication and the formation of memories. Schuman: "By moving the birthplace of the microRNA to the dendrites and synapses where it is closer to its targets, neurons have solved the microRNA-mRNA numbers game and gained a way for external events-resulting in the activation of , to control the local expression of important brain molecules which is important for neuronal communication and also for memory formation."

Explore further: Choreographing the microRNA-target dance

More information: Activity-dependent spatially localized miRNA maturation in neuronal dendrites. Science  10 Feb 2017: DOI: 10.1126/science.aaf8995

Related Stories

Choreographing the microRNA-target dance

January 23, 2017
Scientists face a conundrum in their quest to understand how microRNAs regulate genes and therefore how they influence human disease at the molecular level: How do these tiny RNA molecules find their partners, called messenger ...

Study: Enhancing cancer response to radiation

December 2, 2016
OHSU researcher Sudarshan Anand, Ph.D., has a contemporary analogy to describe microRNA: "I sometimes compare MicroRNA to tweets—they're short, transient and constantly changing."

Think global, act local: New roles for protein synthesis at synapses

May 10, 2012
(Medical Xpress) -- How do we build a memory in the brain? It is well known that for animals (and humans) new proteins are needed to establish long-term memories. During learning information is stored at the synapses, the ...

Breakthrough in understanding of brain development: Immune cell involvement revealed

August 25, 2016
Microglia are cells that combat various brain diseases and injuries by swallowing foreign or disruptive objects and releasing molecules that activate repair mechanisms. Recent findings have suggested these brain cells are ...

Small molecule keeps new adult neurons from straying, may be tied to schizophrenia

July 6, 2016
A small stretch of ribonucleic acid called microRNA could make the difference between a healthy adult brain and one that's prone to disorders including schizophrenia.

Recommended for you

Wiring diagram of the brain provides a clearer picture of brain scan data

December 14, 2018
Already affecting more than five million Americans older than 65, Alzheimer's disease is on the rise and expected to impact more than 13 million people by 2050. Over the last three decades, researchers have relied on neuroimaging—brain ...

Scientists identify method to study resilience to pain

December 14, 2018
Scientists at the Yale School of Medicine and Veterans Affairs Connecticut Healthcare System have successfully demonstrated that it is possible to pinpoint genes that contribute to inter-individual differences in pain.

Parents' brain activity 'echoes' their infant's brain activity when they play together

December 13, 2018
When infants are playing with objects, their early attempts to pay attention to things are accompanied by bursts of high-frequency activity in their brain. But what happens when parents play together with them? New research, ...

In the developing brain, scientists find roots of neuropsychiatric diseases

December 13, 2018
The most comprehensive genomic analysis of the human brain ever undertaken has revealed new insights into the changes it undergoes through development, how it varies among individuals, and the roots of neuropsychiatric illnesses ...

Researchers find the cause of and cure for brain injury associated with gut condition

December 13, 2018
Using a mouse model of necrotizing enterocolitis (NEC)—a potentially fatal condition that causes a premature infant's gut to suddenly die—researchers at Johns Hopkins say they have uncovered the molecular causes of the ...

Researchers discover abundant source for neuronal cells

December 13, 2018
USC researchers seeking a way to study genetic activity associated with psychiatric disorders have discovered an abundant source of human cells—the nose.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.