Zebrafish discovery could hold the key to better understanding motor neuron disease

February 13, 2017
Credit: Chris Stacey

Researchers from Macquarie University's MQ Health are the first in the world to use a refined UV laser ablation technique to study the cellular behavior of MND in living zebrafish. New findings, published in the Journal of Visualized Experiments on 3 February 2017, aim to better-understand how the disease spreads from neuron to neuron, through the body, in order to ultimately stop the debilitating disease in its tracks.

Postdoctoral fellow in Biomedical Sciences at Macquarie University's MQ Health, in Sydney, Marco Morsch, and his research team, have discovered a new, targeted combination technique that is capable of stressing, or killing, an individual unhealthy cell, without affecting any neighbouring healthy cells. This method is a first of its kind for potentially unlocking the secrets of MND.

"We know that some neurons contain a collection of proteins that play an important role in the cause and progression of MND," said Morsch.

"However, what the scientific community still doesn't know is how exactly the spreads to other parts of the body. By visualising how these disease-related proteins get cleared, or manage to move to another cell, we may be able to identify ways to interfere with this mechanism of propagation in order to slow, or ideally, stop progression."

Understanding this is critical, especially in relation to the neurodegenerative condition MND – also known as ALS, and which was at the centre of the worldwide 'Ice Bucket Challenge' phenomenon – which affects in the brainstem, motor cortex and spinal cord, severely limiting a patient's quality of life.

MND targets and kills motor neurons, gradually weakening the muscles and leading to the inability to walk, speak, swallow, and eventually, breathe. MND has a three-to-five year life expectancy after diagnosis.

"Being able to actually visualise the death of a motor neuron and its short-term consequences in a living, transparent zebrafish provides the opportunity to better-understand the disease progression, and hopefully, over time, stop it from further developing in patients," said Morsch.

"Our approach is unique – and especially exciting for MND – as we are able, for the first time, to target only a single cell that we know is expressing the MND protein (fluorescently labelled) and then follow it up with single-cell resolution microscopy. Together, this could allow us to decipher, in great detail, the 'route' of these proteins after their host has died."

Zebrafish have emerged as an attractive model system to study neurogenerative diseases because of its short maturity time, visual access to the nervous system and ease of transgenesis – the act of introducing a gene that will then be passed on to its offspring. Much of a human's protein-coding genes are related to genes found in the zebrafish, making it a perfect specimen for studying.

"The main cellular processes are very similar and applicable between different species."

"Understanding the fundamental disease mechanisms will ultimately help to improve the quality of life for these patients and families, and will be essential to find a much-needed cure for this devastating disease," Morsch concluded.

Explore further: Zebrafish study offers insights into nerve cell repair mechanisms

Related Stories

ALS study reveals role of RNA-binding proteins

October 20, 2016

Although only 10 percent of amyotrophic lateral sclerosis (ALS) cases are hereditary, a significant number of them are caused by mutations that affect proteins that bind RNA, a type of genetic material. University of California ...

Recommended for you

Researchers identify brain network organization changes

May 25, 2017

As children age into adolescence and on into young adulthood, they show dramatic improvements in their ability to control impulses, stay organized, and make decisions. Those executive functions of the brain are key factors ...

Fathers' brains respond differently to daughters than sons

May 25, 2017

Fathers with toddler daughters are more attentive and responsive to those daughters' needs than fathers with toddler sons are to the needs of those sons, according to brain scans and recordings of the parents' daily interactions ...

Scientists demonstrate the existence of 'social neurons'

May 25, 2017

The existence of new "social" neurons has just been demonstrated by scientists from the Institut de neurosciences des systèmes (Aix-Marseille University / INSERM), the Laboratoire de psychologie sociale et cognitive (Université ...

How fear can develop out of others' traumas

May 25, 2017

What happens in the brain when we see other people experiencing a trauma or being subjected to pain? Well, the same regions that are involved when we feel pain ourselves are also activated when we observe other people who ...

Babies' slow brain waves could predict problems

May 25, 2017

The brain waves of healthy newborns – which appear more abnormal than those of severe stroke victims – could be used to accurately predict which babies will have neurodevelopmental disorders.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.