Zebrafish study offers insights into nerve cell repair mechanisms

October 22, 2015, University of Edinburgh
Zebrafish

Tropical fish may hold clues that could aid research into motor neuron disease and paralysis caused by spinal cord injury.

Scientists have discovered that a hormone called serotonin—better known for its role as a mood booster—can help zebrafish to recover from a injury.

They have found that serotonin sends signals to found in the spinal cord to boost the growth of new motor neurons—nerve cells that are vital for controlling muscle activity and movement.

The findings could help scientists to grow motor neurons in the laboratory that can be used in studies aimed at better understanding neurodegenerative conditions.

Damage to motor neurons in people—either as a result of neurodegeneration or spinal cord injury—is irreversible.

Remarkably, however, zebrafish can heal themselves from spinal cord injury by growing new motor neurons from stem cells present in the spinal cord.

Researchers hope that better understanding the repair mechanisms in zebrafish could eventually lead to new therapies for people with neurodegenerative conditions.

Motor neuron disease is an untreatable condition caused by the progressive loss of that control movement, speech and breathing.

The study is published in the journal Cell Reports. It was funded by the Biotechnology and Biological Sciences Research Council.

Dr Thomas Becker, of the University of Edinburgh's Centre for Neuroregeneration and the Euan MacDonald Centre for Motor Neuron Disease Research, said: "Understanding how zebrafish are able to repair damaged nerves could one day help us to trigger similar mechanisms in human stem cells. Our hope is that this may eventually lead to new treatments for conditions such as , for which there is no cure."

Explore further: Hormone signal drives motor neuron growth, fish study shows

Related Stories

Hormone signal drives motor neuron growth, fish study shows

May 23, 2013
A discovery made in fish could aid research into motor neuron disease.

Cell study may aid bid for motor neurone therapies

February 28, 2012
The quest for treatments for motor neurone disease, spinal cord injury and strokes could be helped by new research that shows how key cells are produced.

Scientists see motor neurons 'walking' in real time

September 2, 2015
When you're taking a walk around the block, your body is mostly on autopilot—you don't have to consciously think about alternating which leg you step with or which muscles it takes to lift a foot and put it back down. That's ...

New stem cell research uncovers causes of spinal muscular atrophy

July 1, 2015
New research from the Advanced Gene and Cell Therapy Lab at Royal Holloway, University of London has used pioneering stem cell techniques to better understand why certain cells are more at risk of degenerating in spinal muscular ...

Neuroscientific evidence that motivation promotes recovery after spinal cord injury

October 1, 2015
It is known by clinical experiences that motivation enhances patients' recovery from spinal cord injury or stroke. Depressive symptoms of the patients suffering from such brain injury could be a factor to delay functional ...

Recommended for you

Cell study reveals how head injuries lead to serious brain diseases

November 16, 2018
UCLA biologists have discovered how head injuries adversely affect individual cells and genes that can lead to serious brain disorders. The life scientists provide the first cell "atlas" of the hippocampus—the part of the ...

Newborn babies' brain responses to being touched on the face measured for the first time

November 16, 2018
A newborn baby's brain responds to being touched on the face, according to new research co-led by UCL.

Precision neuroengineering enables reproduction of complex brain-like functions in vitro

November 14, 2018
One of the most important and surprising traits of the brain is its ability to dynamically reconfigure the connections to process and respond properly to stimuli. Researchers from Tohoku University (Sendai, Japan) and the ...

New brain imaging research shows that when we expect something to hurt it does, even if the stimulus isn't so painful

November 14, 2018
Expect a shot to hurt and it probably will, even if the needle poke isn't really so painful. Brace for a second shot and you'll likely flinch again, even though—second time around—you should know better.

A 15-minute scan could help diagnose brain damage in newborns

November 14, 2018
A 15-minute scan could help diagnose brain damage in babies up to two years earlier than current methods.

New clues to the origin and progression of multiple sclerosis

November 13, 2018
Mapping of a certain group of cells, known as oligodendrocytes, in the central nervous system of a mouse model of multiple sclerosis (MS), shows that they might have a significant role in the development of the disease. The ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.