Cross-cell transport bears unexpected responsibility for sealing blood-retinal barrier

March 24, 2017 by Stephanie Dutchen, Harvard Medical School
Traffic signals
Suppression of transcytosis (vesicle traffic across cells), shown here as a red glow, seals off the blood-retinal barrier in mice after birth, contrary to previous beliefs that permeability depends mainly on tight junctions between cells. Credit: Brian Chow and Stephanie Dutchen

A cellular trafficking system called transcytosis may actually do most of the work in controlling the permeability of the barrier between the blood and the central nervous system, according to new research conducted in mice by neurobiologists at Harvard Medical School.

The findings, published March 22 in Neuron, defy conventional scientific wisdom that tight junctions, zipper-like seals between cells, shoulder the responsibility for closing off the barrier.

Barriers evolved to prevent harmful substances from passing into the central nervous system (the brain, spinal cord and retina) from the bloodstream, but their selectivity also prevents most medicines from getting through.

The new study helps flesh out a basic understanding of how the blood-brain barrier—which has largely been a black box—forms and functions, clearing a path toward someday being able to manipulate it to let in drugs or combat certain neurodegenerative diseases.

"Understanding how the barrier works is critical if we want to be able to open or close it to treat neurological diseases," said Chenghua Gu, associate professor of neurobiology at HMS and senior author of the study. "We are beginning to uncover the basic biology so we can save billions of dollars and deliver treatments more effectively."

Most barrier investigations have focused on tight junctions. In recent years, however, Gu has called attention to the contributions of transcytosis, in which select molecules are transported across barrier cells in bubbles called vesicles.

The new study revealed that tight junctions are already in place in the retinas of mice at birth, when the blood-retinal barrier is still permeable, and that the gradual suppression of transcytosis accounts for the final sealing of the barrier.

"When we saw that the barrier was so leaky, we figured both tight junctions and transcytosis wouldn't be formed yet," Gu said. "Discovering that tight junctions were completely functional the minute you enter the retina was shocking even for us—and will be surprising to the field as well, I think."

If the findings are ultimately replicated in humans, whose blood-brain barrier forms before birth, they could lead to new avenues for opening the barrier to deliver drugs or tightening the barrier to treat retinal diseases and certain neurodegenerative diseases where barrier defects precede neuron death, including Alzheimer's disease, ALS and multiple sclerosis.

Mapping new territory

Cross-cell transport bears unexpected responsibility for sealing blood-retinal barrier
Transcytosis rates in the blood-retinal barrier fell in the 10 days after birth, while tight junctions remained in place. Credit: Chenghua Gu

Gu and graduate student Brian Chow decided to examine the blood-retinal barrier because it's similar to the but simpler to study, with its flat, flower-like shape. Since no one had thoroughly characterized blood-retinal barrier development before in any organism, they started at the beginning.

Each day as the mice developed from newborns to adults, the researchers injected small amounts of tracer dye and watched whether it leaked from blood vessels into the retina, signaling that the barrier was still forming, or whether it stayed contained, indicating the barrier had matured and closed off.

They observed that the barrier was still permeable at birth, but within about 10 days, it gradually sealed off from the center of the retina outward.

Now that they had a temporal-spatial map of barrier closure, Chow and Gu checked in on tight junctions and transcytosis using a combination of tracer dye, electron microscopy and microdissections of tiny blood vessels.

"We wanted to find out which came first, tight junctions or suppression of transcytosis, and what their relative contributions were to the barrier," said Chow.

Traffic controller

Although the tight junctions were already zipped up and guarding the barrier on day one, transcytosis was a different story.

In the first days after birth, barrier cells hummed with vesicles ferrying molecules from the bloodstream to the retina. By day eight, traffic had significantly slowed. By day 10, it had crawled nearly to a halt. This plunge in transcytosis mirrored the pattern of barrier closure, spreading outward from the center of the .

"We think transcytosis is a pathway we should pay attention to," said Gu. "Nature suggests it is a good candidate for manipulating the barrier so drugs can go into the central nervous system."

Gu and Chow were able to speed up and delay barrier closing in the mice by genetically altering transcytosis rates. Next, they want to see if they can reopen and close the in adult mice.

Explore further: Possible new plan of attack for opening and closing the blood-brain barrier

More information: Brian Wai Chow et al. Gradual Suppression of Transcytosis Governs Functional Blood-Retinal Barrier Formation, Neuron (2017). DOI: 10.1016/j.neuron.2017.02.043

Related Stories

Possible new plan of attack for opening and closing the blood-brain barrier

May 14, 2014
Like a bouncer at an exclusive nightclub, the blood-brain barrier allows only select molecules to pass from the bloodstream into the fluid that bathes the brain. Vital nutrients get in; toxins and pathogens are blocked. The ...

Group B Streptococcus breaches the blood-brain-barrier

May 11, 2015
Bacterial meningitis is a life-threating infection of the central nervous system. Group B Streptococcus (GBS) is the leading cause of meningitis in newborn babies and can cause severe complications in those that survive the ...

Researchers gain better understanding of cellular intestinal barrier structure

February 13, 2015
(Phys.org)—A team of researches affiliated with several institutions in Japan has conducted research into the cellular structure of tight junctions in the small intestine, and has made progress in better understanding their ...

Breaking through the blood-brain barrier

May 11, 2015
The bacteria that sneak past the brain's defenses to cause deadly bacterial meningitis are clever adversaries. Brandon Kim would know. The biology graduate student at San Diego State University investigates the molecular ...

Study IDs new cause of brain bleeding immediately after stroke

April 17, 2014
By discovering a new mechanism that allows blood to enter the brain immediately after a stroke, researchers at UC Irvine and the Salk Institute have opened the door to new therapies that may limit or prevent stroke-induced ...

Interaction of carbon nanotubes and the blood-brain barrier

April 27, 2015
A paper published in Biomaterials studies the interaction of carbon nanotubes and the blood-brain barrier. It was carried by the Institute of Pharmaceutical Science at the King's College London. Elzbieta Pach and Belén ...

Recommended for you

Forty percent of people have a fictional first memory, says study

July 17, 2018
Researchers have conducted one of the largest surveys of people's first memories, finding that nearly 40 per cent of people had a first memory which is fictional.

Protein found to be key component in irregularly excited brain cells

July 17, 2018
In a new study in mice, researchers have identified a key protein involved in the irregular brain cell activity seen in autism spectrum disorders and epilepsy. The protein, p53, is well-known in cancer biology as a tumor ...

Insight without incision: Advances in noninvasive brain imaging offers improvements to epilepsy surgery

July 17, 2018
About a third of epilepsy sufferers require treatment through surgery. To check for severe epilepsy, clinicians use a surgical procedure called electrocorticography (ECoG). An ECoG maps a section of brain tissue to help clinicians ...

New drug target for remyelination in MS is identified

July 17, 2018
Remyelination, the spontaneous regeneration of the fatty insulator in the brain that keeps neurons communicating, has long been seen as crucial to the next big advance in treating multiple sclerosis (MS). However, a lack ...

Artificial neural networks now able to help reveal a brain's structure

July 17, 2018
The function of the brain is based on the connections between nerve cells. In order to map these connections and to create the connectome, the "wiring diagram" of a brain, neurobiologists capture images of the brain with ...

Convergence of synaptic signals is mediated by a protein critical for learning and memory

July 16, 2018
Inside the brain, is a complex symphony of perfectly coordinated signaling. Hundreds of different molecules amplify, modify and carry information from tiny synaptic compartments all the way through the entire length of a ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.