Hepatitis C mutations 'outrun' immune systems, lab study shows

March 15, 2017
Electron micrographs of hepatitis C virus purified from cell culture. Scale bar is 50 nanometers. Credit: Center for the Study of Hepatitis C, The Rockefeller University.

Unlike its viral cousins hepatitis A and B, hepatitis C virus (HCV) has eluded the development of a vaccine and infected more than 170 million people worldwide. Now, researchers at Johns Hopkins Medicine report that a novel laboratory tool that lets them find virus mutations faster and more efficiently than ever before has identified a biological mechanism that appears to play a big role in helping HCV evade both the natural immune system and vaccines.

For their study, described March 8 in PLOS Pathogens, the researchers used one of the largest libraries of naturally occurring HCV to rapidly sort out which mutations allow HCV to evade immune responses and found that mutations that occur outside of the viral sites typically targeted by such antibody responses play a major role in the virus' resistance.

"We think those mutations could account for the difficulty of making an effective vaccine," says Justin Bailey, M.D., Ph.D., assistant professor of medicine at the Johns Hopkins University School of Medicine.

All told, the researchers compiled a library of 113 HCV strains from 27 patients with HCV infections followed at The Johns Hopkins Hospital. The researchers then tested each strain of the virus for susceptibility to two potent and commonly used antibodies in vaccine development experiments for HCV, HC33.4 and AR4A.

Because natural HCVs do not thrive in the lab, the researchers first created pseudo-viruses using the contents and capsule of HIV, a virus that grows easily in the lab. Then, by placing surface proteins of each HCV virus onto these pseudoviruses, the researchers were able to efficiently infect human cells with the HCV strains in tissue culture.

One-third of the cells infected with each strain received treatment with HC33.4 antibodies, one-third received treatment with AR4A antibodies and a final third (the control group) received no treatment. The researchers then compared the level of infection in the treated cells against the untreated cells.

The investigators observed that HC33.4 and AR4A neutralized only 88 percent and 85.8 percent of the virus, respectively. "We discovered that there was a lot of naturally occurring resistance, meaning we may need to greatly expand the set of viruses we use to evaluate potential vaccines," says Ramy El-Diwany, a student at the Johns Hopkins University School of Medicine and first author of the study.

The team also found that the effectiveness of the antibodies varied, with some viral strains very inhibited by the antibodies and others hardly affected at all. To find out what was causing the variation, the researchers next tapped into the HCV genomes.

Using a program that compared the genetic sequences of each viral strain, the researchers were able to analyze which mutations conferred resistance to each strain of the virus. They found that despite wide-ranging levels of resistance to HC33.4 and AR4A, the areas that allow these antibodies to bind to the virus barely varied. The HC33.4 mutated at only one location, for example, and the AR4A binding site was the same across all viral strains.

The researchers then expanded their search to the proteins on the surface of HCV. They found that while mutations in the binding site were not associated with resistance, other mutations in the surface proteins away from the binding site correlated with viruses that persisted despite antibody treatment.

"These are the we believe may allow the viruses to avoid being blocked by antibodies altogether. If you think of it like a race, the antibody is trying to bind to the virus before it can enter the cell. We think this mutation may allow the virus to get into the cell before it even encounters the immune system," says Bailey.

HCV is spread from person to person through contact with the blood of an infected person. Some patients are able to fight off the infection naturally, but for 70 to 85 percent of people, the infection becomes chronic.

A new HCV infection is effectively treated with direct-acting antiviral drugs, but the say a preventive vaccine is needed to control what they call an HCV pandemic because as many as 50 percent of people infected are unaware that they carry the , putting others at risk of infection. Treatment does not protect those at risk from future infection by HCV. "HCV is very unlikely to be eliminated by treatment alone," says El-Diwany.

Explore further: Finding strengths—and weaknesses—in hepatitis C's armor

More information: Ramy El-Diwany et al. Extra-epitopic hepatitis C virus polymorphisms confer resistance to broadly neutralizing antibodies by modulating binding to scavenger receptor B1, PLOS Pathogens (2017). DOI: 10.1371/journal.ppat.1006235

Related Stories

Finding strengths—and weaknesses—in hepatitis C's armor

March 11, 2015
Using a specially selected library of different hepatitis C viruses, a team of researchers led by Johns Hopkins scientists has identified tiny differences in the pathogens' outer shell proteins that underpin their resistance ...

Scientists identify potent antibody that neutralizes nearly all HIV strains

November 15, 2016
Scientists from the National Institutes of Health have identified an antibody from an HIV-infected person that potently neutralized 98 percent of HIV isolates tested, including 16 of 20 strains resistant to other antibodies ...

Broadly neutralizing HIV antibodies pave the way for vaccine

September 26, 2016
A small number of people infected with HIV produce antibodies with an amazing effect: Not only are the antibodies directed against the own virus strain, but also against different sub-types of HIV that circulate worldwide. ...

Scientists pinpoint mutations responsible for ineffective 2014-2015 flu vaccine

June 25, 2015
Viruses like influenza have the ability to mutate over time, and given that the flu vaccines administered during the 2014-2015 season were largely ineffective at preventing the spread of the flu, it appears the virus that ...

Scientists discover HIV antibody that binds to novel target on virus

September 3, 2014
An NIH-led team of scientists has discovered a new vulnerability in the armor of HIV that a vaccine, other preventive regimen or treatment could exploit. The site straddles two proteins, gp41 and gp120, that jut out of the ...

Recommended for you

Study seeks to aid diagnosis, management of catatonia

December 11, 2017
Catatonia, a syndrome of motor, emotional and behavioral abnormalities frequently characterized by muscular rigidity and a trance-like mental stupor and at times manifesting with great excitement or agitation, can occur during ...

New compound stops progressive kidney disease in its tracks

December 7, 2017
Progressive kidney diseases, whether caused by obesity, hypertension, diabetes, or rare genetic mutations, often have the same outcome: The cells responsible for filtering the blood are destroyed. Reporting today in Science, ...

New Lyme disease tests could offer quicker, more accurate detection

December 7, 2017
New tests to detect early Lyme disease - which is increasing beyond the summer months -could replace existing tests that often do not clearly identify the infection before health problems occur.

Spinal tap needle type impacts the risk of complications

December 6, 2017
The type of needle used during a lumbar puncture makes a significant difference in the subsequent occurrence of headache, nerve irritation and hearing disturbance in patients, according to a study by Hamilton medical researchers.

Men with HPV are 20 times more likely to be reinfected after one year

December 5, 2017
A new analysis of genital human papillomavirus (HPV) in men shows that infection with one HPV type strongly increases the risk of reinfection with the same type. In fact, men who are infected with the type responsible for ...

New tuberculosis drugs possible with understanding of old antibiotic

December 5, 2017
Tuberculosis, and other life-threatening microbial diseases, could be more effectively tackled with future drugs, thanks to new research into an old antibiotic by the University of Warwick and The Francis Crick Institute.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.