Scientists discover HIV antibody that binds to novel target on virus

September 3, 2014, NIH/National Institute of Allergy and Infectious Diseases
hiv
Scanning electron micrograph of an HIV-infected H9 T cell. Credit: NIAID

An NIH-led team of scientists has discovered a new vulnerability in the armor of HIV that a vaccine, other preventive regimen or treatment could exploit. The site straddles two proteins, gp41 and gp120, that jut out of the virus and augments other known places where broadly neutralizing antibodies (bNAbs) bind to HIV. This newly identified site on the viral spike is where a new antibody found by the scientists in an HIV-infected person binds to the virus. Called 35O22, the antibody prevents 62 percent of known HIV strains from infecting cells in the laboratory and is extremely potent, meaning even a relatively small amount of it can neutralize the virus.

Following their discoveries, the scientists found that 35O22-like antibodies were common in a group of HIV-infected people whose blood contained antibodies that potently neutralized a broad array of HIV strains. According to the researchers, this suggests that it might be easier for a vaccine to elicit 35O22 than some other known bNAbs, which are less common.

Since 35O22 binds only to forms of the viral spike that closely resemble those that naturally appear on HIV, the scientists believe a vaccine that elicits 35O22-like antibodies would need to mimic the natural shape of the spike as closely as possible. This would require a different approach than that used in many previous experimental HIV vaccines, which have included just parts of the viral spike rather than a structure that looks like the entire native viral spike.

In addition, the researchers report, the HIV strains that 35O22 neutralizes complement strains neutralized by other bNAbs. This suggests that eliciting or combining 35O22 with a few other bNAbs in a vaccine or a prevention or could likely neutralize the vast majority of HIV strains found around the globe, according to the .

Explore further: HIV antibodies block infection by reservoir-derived virus in laboratory study

More information: J Huang et al. Broad and potent HIV-1 neutralization by a human antibody that binds the gp41-120 interface. Nature DOI: 10.1038/nature13601 (2014).

Related Stories

HIV antibodies block infection by reservoir-derived virus in laboratory study

August 26, 2014
A laboratory study led by scientists from the National Institute of Allergy and Infectious Diseases, part of the National Institutes of Health (NIH), lends further weight to the potential effectiveness of passive immunotherapy ...

Scientists create new tool for identifying powerful HIV antibodies

May 9, 2013
A team of NIH scientists has developed a new tool to identify broadly neutralizing antibodies (bNAbs) capable of preventing infection by the majority of HIV strains found around the globe, an advance that could help speed ...

Mechanism found for development of protective HIV antibodies

July 24, 2014
Scientists at Duke Medicine have found an immunologic mechanism that makes broadly neutralizing antibodies in people who are HIV-1 infected.

New research offers hope for HIV vaccine development

August 13, 2014
In a scientific discovery that has significant implications for HIV vaccine development, collaborators at the Boston University School of Medicine (BUSM) and Duke University School of Medicine have uncovered novel properties ...

Scientists boost potential of passive immunization against HIV

August 13, 2014
Scientists are pursuing injections or intravenous infusions of broadly neutralizing HIV antibodies (bNAbs) as a strategy for preventing HIV infection. This technique, called passive immunization, has been shown to protect ...

Research may be beating HIV, but a vaccine remains distant

July 11, 2014
Three decades since the onset of the infection in a global population, HIV care and treatment is looking very different. Given the difficulties involved, it is remarkable that having developed good treatments, the global ...

Recommended for you

HIV exports viral protein in cellular packages

February 15, 2018
HIV may be able to affect cells it can't directly infect by packaging a key protein within the host's cellular mail and sending it out into the body, according to a new study out of a University of North Carolina Lineberger ...

Can gene therapy be harnessed to fight the AIDS virus?

February 13, 2018
For more than a decade, the strongest AIDS drugs could not fully control Matt Chappell's HIV infection. Now his body controls it by itself, and researchers are trying to perfect the gene editing that made this possible.

Big data methods applied to the fitness landscape of the HIV envelope protein

February 7, 2018
Despite significant advances in medicine, there is still no effective vaccine for the human immunodeficiency virus (HIV), although recent hope has emerged through the discovery of antibodies capable of neutralizing diverse ...

Scientists report big improvements in HIV vaccine production

February 5, 2018
Research on HIV over the past decade has led to many promising ideas for vaccines to prevent infection by the AIDS virus, but very few candidate vaccines have been tested in clinical trials. One reason for this is the technical ...

Microbiome research refines HIV risk for women

January 25, 2018
Drawing from data collected for years by AIDS researchers in six African nations, scientists have pinpointed seven bacterial species whose presence in high concentrations may significantly increase the risk of HIV infection ...

Researchers find latent HIV reservoirs inherently resistant to elimination by CD8+ T-cells

January 22, 2018
The latest "kick-and-kill" research to eliminate the HIV virus uncovered a potential obstacle in finding a cure. A recent study by researchers at the George Washington University (GW) found that latent HIV reservoirs show ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.