Mechanism found for development of protective HIV antibodies

July 24, 2014, Duke University Medical Center

Scientists at Duke Medicine have found an immunologic mechanism that makes broadly neutralizing antibodies in people who are HIV-1 infected.

These findings, published online July 24, 2014, in the journal Cell, are a major development toward determining the key to induction of potent neutralizing antibodies by an HIV vaccine.

The research team found that two distinct B-cell lineage antibodies teamed up to stimulate the highly sought-after broadly neutralizing antibodies to HIV. The team was led by Barton Haynes, M.D., director of the Duke Center for HIV/AIDS Vaccine Immunology-Immunogen Discovery (CHAVI-ID) and the Duke Human Vaccine Institute, and John Mascola, M.D., director of the Vaccine Research Center of the National Institute of Allergy and Infectious Diseases (NIAID), part of the National Institutes of Health.

The induction of these antibodies that can neutralize a variety of HIV strains is a key strategy for a global vaccine, Haynes said. High levels of such antibodies are made in approximately 20 percent of individuals with HIV infection.

Last year, this team published in the journal Nature the first mapping of co-evolution of broadly neutralizing antibodies (bnAbs) and the viruses that induced them in an infected individual. Now the same team reports the precise mechanism by which immune system B cells learn to neutralize many HIV strains.

In this new study, scientists were surprised to discover that a helper neutralizing set of antibodies cooperated with cross-reactive neutralizing antibodies to lead to a potent set of broadly neutralizing antibodies. The other helper lineage contained antibodies with neutralization for the virus that caused the infection.

This antibody targeted a virus outer coat (envelope) region to which the broad neutralizing antibodies also bound. In doing so, the helper lineage antibodies selected viruses with strong ability to stimulate the broadly neutralizing set of antibodies.

Thus, one set of antibodies selected a set of virus escape mutants that "taught" the broadly neutralizing lineage how to neutralize HIV variants. The scientists hypothesize that this process occurs iteratively throughout infection to lead to the ability to make antibodies that can neutralize a wide spectrum of HIV strains.

"The finding that the maturation of a bnAb lineage could be boosted by a helper lineage has significant implications for the development of AIDS vaccines," said one of the first authors, Feng Gao, M.D., of the Duke Human Vaccine Institute. "Repeated immunization of immunogens derived from the initial transmitted/founder virus and escape variants with higher binding ability to a bnAb lineage may be required to induce bnAbs."

"The next step is to perform similar studies in other individuals who make broadly neutralizing antibodies, and determine if this is a general mechanism for induction of other specificities of such antibodies," Haynes said. "Then the ultimate proof of utility of this discovery is to use it to design immunogens that can induce broadly neutralizing antibodies by vaccination."

Using the findings from this study, the team has designed vaccine immunogens to selectively trigger the cooperating antibody-producing B cells to cooperate to make in a manner that mimics broadly neutralizing antibody development in natural HIV infection.

Explore further: Unique individual demonstrates desired immune response to HIV virus

Related Stories

Unique individual demonstrates desired immune response to HIV virus

March 10, 2014
One person's unique ability to fight HIV has provided key insights into an immune response that researchers now hope to trigger with a vaccine, according to findings reported by a team that includes Duke Medicine scientists.

New artificial protein mimics a part of the HIV outer coat

October 22, 2013
A team of scientists at Duke Medicine and Memorial Sloan-Kettering Cancer Center has created an artificial protein coupled with a sugar molecule that mimics a key site on the outer coat of HIV where antibodies can bind to ...

Researchers find potential map to more effective HIV vaccine

April 3, 2013
By tracking the very earliest days of one person's robust immune response to HIV, researchers have charted a new route for developing a long-sought vaccine that could boost the body's ability to neutralize the virus.

Study of antibody evolution charts course toward HIV vaccine

March 2, 2014
In an advance for HIV vaccine research, a scientific team has discovered how the immune system makes a powerful antibody that blocks HIV infection of cells by targeting a site on the virus called V1V2. Many researchers believe ...

Researchers discuss challenges to developing broadly protective HIV vaccines

September 7, 2011
The human body can produce powerful antibodies that shield cells in the laboratory against infection by an array of HIV strains. In people, however, recent research shows that these broadly neutralizing antibodies are not ...

Recommended for you

HIV-1 genetic diversity is higher in vaginal tract than in blood during early infection

January 18, 2018
A first-of-its-kind study has found that the genetic diversity of human immunodeficiency virus type 1 (HIV-1) is higher in the vaginal tract than in the blood stream during early infection. This finding, published in PLOS ...

War in Ukraine has escalated HIV spread in the country: study

January 15, 2018
Conflict in Ukraine has increased the risk of HIV outbreaks throughout the country as displaced HIV-infected people move from war-affected regions to areas with higher risk of transmission, according to analysis by scientists.

Researchers offer new model for uncovering true HIV mortality rates in Zambia

January 12, 2018
A new study that seeks to better ascertain HIV mortality rates in Zambia could provide a model for improved national and regional surveillance approaches, and ultimately, more effective HIV treatment strategies.

New drug capsule may allow weekly HIV treatment

January 9, 2018
Researchers at MIT and Brigham and Women's Hospital have developed a capsule that can deliver a week's worth of HIV drugs in a single dose. This advance could make it much easier for patients to adhere to the strict schedule ...

New long-acting, less-toxic HIV drug suppresses virus in humanized mice

January 8, 2018
A team of Yale researchers tested a new chemical compound that suppresses HIV, protects immune cells, and remains effective for weeks with a single dose. In animal experiments, the compound proved to be a promising new candidate ...

Usage remains low for pill that can prevent HIV infection

January 8, 2018
From gritty neighborhoods in New York and Los Angeles to clinics in Kenya and Brazil, health workers are trying to popularize a pill that has proven highly effective in preventing HIV but which—in their view—remains woefully ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.