New research offers hope for HIV vaccine development

August 13, 2014, Boston University Medical Center
Human immunodefieciency virus (HIV). Credit: C. Goldsmith/public domain

In a scientific discovery that has significant implications for HIV vaccine development, collaborators at the Boston University School of Medicine (BUSM) and Duke University School of Medicine have uncovered novel properties of special HIV antibodies. The paper, published in Cell Host and Microbe, describes how some HIV antibodies experience an unusual type of mutation, a phenomenon that allows them to neutralize many different strains of HIV. These antibodies are called "broadly neutralizing antibodies," or BNAbs.

Antibodies develop from immune cells known as B cells. When B cells are confronted with foreign elements (known as antigens), some of them experience a high rate of mutations resulting in the substitution of an amino acid within the antibody for another. B cells whose antibodies carry variations that allow them to bind tightly with antigens proliferate, whereas those that do not die off. Thus, the immune system is able to adapt constantly by utilizing its own very fast version of evolution. More rarely, the antibodies will experience more dramatic changes than single . When whole strings of are inserted or deleted, this is known as an indel. Less than four percent of contain indels; in BNAbs this figure is more than 50 percent. Only a small subset of HIV-infected individuals produce BNAbs.

Comparing the antibody genes of HIV infected and non-infected individuals, scientists discovered that HIV infected individuals had 27 percent more insertions and 23 percent more deletions than non-infected individuals. They also found this elevated rate of mutation persisted in all HIV-infected individuals, regardless of their ability to produce BNAbs. Most importantly, this high rate of indels was due to an overall increase in mutation frequency rather than something special associated with HIV itself, or unusual characteristics of the people who are able to make BNAbs. "This result suggests that a BNAb-eliciting vaccine is possible after all," explained lead and corresponding author Thomas B. Kepler, PhD, professor of microbiology at BUSM. "More than 80 percent of indels were found in genetic regions responsible for binding to the HIV virus," he added.

Since the BNAb indels don't result from special characteristics of the people who make them, the researchers suspected that the indels may be important for the antibody function. They studied one particular BNAb called CH31, which has a very large indel, to see what role these indels might have played in the acquisition of broad neutralizing activity. They found that the indel was the key event in the development of CH31. According to the researchers just putting the indel into antibodies that did not originally have it, increased its effectiveness eight-fold; taking it away from ones that did have it initially, made them much worse. "When tested on their ability to broadly neutralize HIV, only those CH31 with indels were able to accomplish the task," said Kepler.

Barton Haynes, MD, director of the Duke Human Vaccine Institute and senior author noted, The more we understand about the unusual pathway the BNAbs take to develop, the better chance we will have in inducing them. This news study unravels a particularly complex BNAb pathway." The great hope in the quest to prevent HIV-1 is the development of a single vaccine that can cover multiple forms of HIV-1. A vaccine that works by eliciting BNAbs is a major goal, and this new work suggest that strategies for such a vaccine should focus on speeding up the antibody evolution that occurs after every immunization. The study suggests that such a strategy could work in everyone, not just a lucky few.

Explore further: Mechanism found for development of protective HIV antibodies

Related Stories

Mechanism found for development of protective HIV antibodies

July 24, 2014
Scientists at Duke Medicine have found an immunologic mechanism that makes broadly neutralizing antibodies in people who are HIV-1 infected.

Scientists create new tool for identifying powerful HIV antibodies

May 9, 2013
A team of NIH scientists has developed a new tool to identify broadly neutralizing antibodies (bNAbs) capable of preventing infection by the majority of HIV strains found around the globe, an advance that could help speed ...

Gut flora influences HIV immune response

August 13, 2014
Normal microorganisms in the intestines appear to play a pivotal role in how the HIV virus foils a successful attack from the body's immune system, according to new research from Duke Medicine.

Research may be beating HIV, but a vaccine remains distant

July 11, 2014
Three decades since the onset of the infection in a global population, HIV care and treatment is looking very different. Given the difficulties involved, it is remarkable that having developed good treatments, the global ...

Unique individual demonstrates desired immune response to HIV virus

March 10, 2014
One person's unique ability to fight HIV has provided key insights into an immune response that researchers now hope to trigger with a vaccine, according to findings reported by a team that includes Duke Medicine scientists.

Individual genotype influences effectiveness of HIV vaccine

August 8, 2014
Almost 40 million people worldwide live with HIV/AIDS. Despite great effort, HIV-1 vaccine development has been challenging. A recent HIV vaccine trial, known as RV144, revealed that a combination of 2 vaccines protected ...

Recommended for you

HIV-1 genetic diversity is higher in vaginal tract than in blood during early infection

January 18, 2018
A first-of-its-kind study has found that the genetic diversity of human immunodeficiency virus type 1 (HIV-1) is higher in the vaginal tract than in the blood stream during early infection. This finding, published in PLOS ...

War in Ukraine has escalated HIV spread in the country: study

January 15, 2018
Conflict in Ukraine has increased the risk of HIV outbreaks throughout the country as displaced HIV-infected people move from war-affected regions to areas with higher risk of transmission, according to analysis by scientists.

Researchers offer new model for uncovering true HIV mortality rates in Zambia

January 12, 2018
A new study that seeks to better ascertain HIV mortality rates in Zambia could provide a model for improved national and regional surveillance approaches, and ultimately, more effective HIV treatment strategies.

New drug capsule may allow weekly HIV treatment

January 9, 2018
Researchers at MIT and Brigham and Women's Hospital have developed a capsule that can deliver a week's worth of HIV drugs in a single dose. This advance could make it much easier for patients to adhere to the strict schedule ...

New long-acting, less-toxic HIV drug suppresses virus in humanized mice

January 8, 2018
A team of Yale researchers tested a new chemical compound that suppresses HIV, protects immune cells, and remains effective for weeks with a single dose. In animal experiments, the compound proved to be a promising new candidate ...

Usage remains low for pill that can prevent HIV infection

January 8, 2018
From gritty neighborhoods in New York and Los Angeles to clinics in Kenya and Brazil, health workers are trying to popularize a pill that has proven highly effective in preventing HIV but which—in their view—remains woefully ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.