Gut flora influences HIV immune response

August 13, 2014
hiv
Scanning electron micrograph of an HIV-infected H9 T cell. Credit: NIAID

Normal microorganisms in the intestines appear to play a pivotal role in how the HIV virus foils a successful attack from the body's immune system, according to new research from Duke Medicine.

The study, published Aug. 13, 2014, in the journal Cell Host & Microbe, builds on previous work from researchers at the Duke Human Vaccine Institute that outlined a perplexing quality about HIV: The antibodies that originally arise to fight the are ineffective.

These initial, ineffective antibodies target regions of the virus's outer envelope called gp41 that quickly mutates, and the virus escapes being neutralized. It turns out that the virus has an accomplice in this feat - the natural microbiome in the gut.

"Gut flora keeps us all healthy by helping the immune system develop, and by stimulating a group of immune that keep bacteria in check," said senior author Barton F. Haynes, M.D., director of the Duke Human Vaccine Institute. "But this research shows that antibodies that react to bacteria also cross-react to the HIV envelope."

Haynes said the body fights most new infections by deploying what are known as naïve B cells, which then imprint a memory of the pathogen so the next time it encounters the bug, it knows how to fight it.

But when the HIV virus invades and begins replicating in the gastrointestinal tract, no such naïve B cells are dispatched. Instead, a large, pre-existing pool of memory B cells respond – the same memory B cells in the gut that fight bacterial infections such as E coli.

This occurs because the region of the HIV virus that the immune system targets, the gp41 region on the virus's outer envelope, appears to be a molecular mimic of bacterial antigens that B cells are primed to target.

"The B cells see the virus and take off – they make all these antibodies, but they aren't protective, because they are targeted to non-protective regions of the virus envelope."

Haynes and colleagues said the findings were confirmed in tests of people who were not infected with HIV. Among non-infected people, the researchers isolated mutated gp41-gut flora antibodies that cross-react with intestinal bacteria.

"The hypothesis now is that the gp41 antibody response in HIV infection can be derived from a pre-infection memory B cell pool triggered by gut bacteria that cross-reacts with the HIV envelope," said lead author Ashley M. Trama. "This supports the notion that the dominant HIV antibody response is influenced by previously activated memory B cells that are present before HIV infection and are cross-reactive with intestinal bacteria."

Haynes said the finding provides compelling new information for HIV vaccine development, which is the next phase of research.

"Not only can gut flora influence the development and function of the , but perhaps also pre-determine our reaction to certain infections such as HIV," Haynes said.

Explore further: Mechanism found for development of protective HIV antibodies

Related Stories

Mechanism found for development of protective HIV antibodies

July 24, 2014
Scientists at Duke Medicine have found an immunologic mechanism that makes broadly neutralizing antibodies in people who are HIV-1 infected.

Unique individual demonstrates desired immune response to HIV virus

March 10, 2014
One person's unique ability to fight HIV has provided key insights into an immune response that researchers now hope to trigger with a vaccine, according to findings reported by a team that includes Duke Medicine scientists.

Researcher unlocks next step in creating HIV-1 immunotherapy using fossil virus

July 17, 2014
The road to finding a cure for HIV-1 is not without obstacles. However, thanks to cutting-edge research by Douglas Nixon, M.D., Ph.D., and colleagues, performed at the George Washington University (GW), Oregon Health & Science ...

Experimental HIV vaccine targets virus envelope protein

November 27, 2013
AIDS research has investigated many strategies to tackle the HIV virus. Now, a new type of vaccine developed within the EU-funded project EuroNeut-41, targets an HIV envelope protein called the gp41. The protein is directly ...

New artificial protein mimics a part of the HIV outer coat

October 22, 2013
A team of scientists at Duke Medicine and Memorial Sloan-Kettering Cancer Center has created an artificial protein coupled with a sugar molecule that mimics a key site on the outer coat of HIV where antibodies can bind to ...

Scientists uncover features of antibody-producing cells in people infected with HIV

June 3, 2014
By analyzing the blood of almost 100 treated and untreated HIV-infected volunteers, a team of scientists has identified previously unknown characteristics of B cells in the context of HIV infection. B cells are the immune ...

Recommended for you

Scientists divulge latest in HIV prevention

July 25, 2017
A far cry from the 1990s "ABC" campaign promoting abstinence and monogamy as HIV protection, scientists reported on new approaches Tuesday allowing people to have all the safe sex they want.

Candidate AIDS vaccine passes early test

July 24, 2017
The three-decade-old quest for an AIDS vaccine received a shot of hope Monday when developers announced that a prototype triggered the immune system in an early phase of human trials.

Girl's HIV infection seems under control without AIDS drugs

July 24, 2017
A South African girl born with the AIDS virus has kept her infection suppressed for more than eight years after stopping anti-HIV medicines—more evidence that early treatment can occasionally cause a long remission that, ...

Meds by monthly injection might revolutionize HIV care (Update)

July 24, 2017
Getting a shot of medication to control HIV every month or two instead of having to take pills every day could transform the way the virus is kept at bay.

Paris spotlight on latest in AIDS science

July 21, 2017
Some 6,000 HIV experts gather in Paris from Sunday to report advances in AIDS science as fading hopes of finding a cure push research into new fields.

Scientists elicit broadly neutralizing antibodies to HIV in calves

July 20, 2017
Scientists supported by the National Institutes of Health have achieved a significant step forward, eliciting broadly neutralizing antibodies (bNAbs) to HIV by immunizing calves. The findings offer insights for HIV vaccine ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.