Never before seen images of early stage Alzheimer's disease

March 13, 2017, Lund University

Researchers at Lund University in Sweden have used the MAX IV synchrotron in Lund – the strongest of its kind in the world - to produce images that predate the formation of toxic clumps of beta-amyloid, the protein believed to be at the root of Alzheimer's disease. The unique images appear to contradict a previously unchallenged consensus. Instead of attempting to eliminate beta-amyloid, or so-called plaques, the researchers now suggest stabilizing the protein.

It is a long-held belief in the scientific community that the appear almost instantaneously. Hence the term "popcorn plaques". The infrared spectroscopy images, however, revealed something entirely different.

The researchers could now see structural, molecular changes in the brain.

"No one has used this method to look at Alzheimer's development before. The images tell us that the progression is slower than we thought and that there are steps in the development of Alzheimer's that we know little about. This, of course, sparked our curiosity," says Gunnar Gouras, professor in experimental neurology at Lund University and senior author of the study.

What was happening at this previously unknown phase? Through biochemical identification the first author of the study, Oxana Klementieva, was able to look closer at these early brain changes.

The results revealed another discovery. Namely, that the beta-amyloid did not appear as a single peptide, a widely held belief in the field, but as a unit of four peptides sticking together, a tetramer.

This breakthrough offers a new hypothesis to the cause of the disease. The abnormal separation of these four peptides could be the start of the beta-amyloid aggregation that later turns into plaques.

"This is very, very exciting. In another , transthyretin amyloidosis, the breaking up of the tetramer has been identified as key in disease development. For this disease, there is already a drug in the clinic that stabilizes the tetramers, consequently slowing down disease progression. We hope that stabilizing beta-amyloid in a similar fashion may be the way forward in developing future therapies" says Gunnar Gouras.

The discovery could therefore alter the direction of therapy development for the disease. The aim of most clinical trials today is to eliminate plaques.

Researchers at Lund University will now try to understand the interaction patterns of beta-amyloid preceding the aggregation process. Finding the antidote to whatever breaks the beta-amyloid protein apart could open doors towards a major shift in the of therapies for Alzheimer's disease.

Explore further: 'Pac-Man' gene implicated in Alzheimer's disease

More information: O. Klementieva et al. Pre-plaque conformational changes in Alzheimer's disease-linked Aβ and APP, Nature Communications (2017). DOI: 10.1038/NCOMMS14726

Related Stories

'Pac-Man' gene implicated in Alzheimer's disease

July 26, 2016
A gene that protects the brain from the harmful build-up of amyloid-beta, one of the causative proteins implicated in Alzheimer's disease, has been identified as a new target for therapy by NeuRA researchers.

New findings contradict dominant theory in Alzheimer's disease

October 28, 2011
For decades the amyloid hypothesis has dominated the research field in Alzheimer's disease. The theory describes how an increase in secreted beta-amyloid peptides leads to the formation of plaques, toxic clusters of damaged ...

New research shows how amyloid beta enters brain cells

September 20, 2016
Researchers have known that the peptide amyloid beta plays a role in causing Alzheimer's disease, but they are still working to determine how it becomes toxic.

Alzheimer protein's structure may explain its toxicity

May 7, 2015
Researchers at the University of Illinois at Chicago have determined the molecular structure of one of the proteins in the fine fibers of the brain plaques that are a hallmark of Alzheimer's disease. This molecule, called ...

Hyperactive neurons may be culprit in Alzheimer's

January 13, 2016
A long-term reduction in neuronal activity reduces amyloid plaques associated with Alzheimer's disease, Yale University researchers have found. The study, using mouse models of Alzheimer's, found the opposite is also true—triggering ...

Alzheimer's more versatile than previously known

March 7, 2016
Accumulation of the substance amyloid beta in the brain impairs the memory and cognitive ability in people with Alzheimer's. New findings from Lund University in Sweden show that the cause of amyloid beta pathology might ...

Recommended for you

Study clarifies ApoE4's role in dementia

September 20, 2018
ApoE4, a protein linked to both Alzheimer's disease and a form of dementia caused by damage of blood vessels in the brain, increases the risk of cognitive impairment by reducing the number and responsiveness of blood vessels ...

Machine learning IDs markers to help predict Alzheimer's

September 19, 2018
Nearly 50 million people worldwide have Alzheimer's disease or another form of dementia. These irreversible brain disorders slowly cause memory loss and destroy thinking skills, eventually to such an extent that self-care ...

Discovery could explain failed clinical trials for Alzheimer's, and provide a solution

September 19, 2018
Researchers at King's College London have discovered a vicious feedback loop underlying brain degeneration in Alzheimer's disease which may explain why so many drug trials have failed. The study also identifies a clinically ...

Air pollution may be linked to heightened dementia risk

September 18, 2018
Air pollution may be linked to a heightened risk of developing dementia, finds a London-based observational study, published in the online journal BMJ Open. The associations found couldn't be explained by factors known to ...

A new approach for finding Alzheimer's treatments

September 11, 2018
Considering what little progress has been made finding drugs to treat Alzheimer's disease, Maikel Rheinstädter decided to come at the problem from a totally different angle—perhaps the solution lay not with the peptide ...

Study prevents cognitive decline in older blacks with memory loss

September 10, 2018
With nearly twice the rate of dementia as whites, blacks are at a higher risk for developing diseases like Alzheimer's, but there has been little research on how to reduce this racial health disparity. A new study in black ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.