Longer telomeres protect against diseases of aging: A tale of mice and men

March 27, 2017
Deepak Srivastava, MD, is the Younger Family Director and a Senior Investigator at the Gladstone Institute of Cardiovascular Disease and Director of the Roddenberry Stem Cell Center. Credit: Chris Goodfellow, Gladstone Institutes

Scientists at the Gladstone Institutes discovered a key mechanism that protects mice from developing a human disease of aging, and begins to explain the wide spectrum of disease severity often seen in humans. Both aspects center on the critical role of telomeres, protective caps on the ends of chromosomes that erode with age.

Erosion of telomeres has long been associated with diseases of aging, but how length affects human disease has remained largely a mystery. Now, scientists find that shortening telomeres in carrying a human genetic mutation linked to heart disease results in a deadly buildup of calcium in heart valves and vessels. This innovative model allows the researchers to test viable new drugs for this disease, and it provides a potential solution to studying other human disorders of aging in mice.

Calcific aortic valve disease (CAVD) causes calcium to accumulate in heart valves and vessels until they harden like bone. It can only be treated by replacing the valve through heart surgery and is the third leading cause of heart disease, affecting three percent of adults over the age of 75. CAVD develops with age, and it can be caused by a mutation in one of two copies of the NOTCH1 gene.

Humans typically have two copies of each gene. When one copy is lost, the remaining gene may not produce enough of its protein to sustain normal function. While reducing protein levels by half often causes disease in humans, mice with the same change are frequently protected from disease, but scientists have been unsure why. In the new study, published in the Journal of Clinical Investigation, the Gladstone scientists linked telomere length to risk for or resistance to these types of diseases. Laboratory mice have naturally longer telomeres than humans, which the researchers now think protects them from age-related genetic conditions, such as CAVD.

"Our findings reveal a critical role for telomere length in a mouse model of age-dependent ," said first author Christina Theodoris, an MD/PhD student in the laboratory of Deepak Srivastava, MD. "This model provides a unique opportunity to dissect the mechanisms by which telomeres affect age-dependent disease and also a system to test novel therapeutics for aortic valve disease."

The researchers, who previously identified NOTCH1 as a genetic culprit in human CAVD, created mice that had and were also missing one copy of the NOTCH1 gene, since mutation of NOTCH1 alone failed to induce valve disease in mice. Remarkably, mice with both shorter telomeres and the NOTCH1 mutation showed all the cardiac abnormalities seen in humans, including the disease-defining calcification of the aortic valve. Mice with the shortest telomeres had the greatest heart damage, with some even showing signs of valve disease as newborns. The scientists think that telomere length affects by changing gene expression in pathways implicated in CAVD, such as anti-inflammatory and anti-calcifications pathways.

Previous studies found that patients with valve calcification have shorter telomeres than healthy individuals of the same age. Additionally, some patients who have the NOTCH1 mutation develop CAVD in their 50s, while others are born with deadly valve abnormalities. Based on the new findings, the researchers suspect telomere length explains the variations in disease severity.

"Historically, we have had trouble modeling human diseases caused by mutation of just one copy of a gene in mice, which impedes research on complex conditions and limits our discovery of therapeutics," explained Srivastava, director of the Gladstone Institute of Cardiovascular Disease and senior author on the study. "Progressive shortening of longer telomeres that are protective in mice not only reproduced the clinical disease caused by NOTCH1 mutation, it also recapitulated the spectrum of disease severity we see in humans."

Prior research by Helen Blau, PhD, and Foteini Mourkioti, PhD, of Stanford University—who were co-authors on the current study—demonstrated that shortening telomeres in a mouse model of Duchenne muscular dystrophy also elicited a more human-like disease, raising the possibility that may be protective for many disease-causing mutations.

The researchers plan to use the mouse models of CAVD to test several potential drug therapies they identified, in the hopes of discovering the first medical treatment for the .

Explore further: Scientists discover why some heart tissue turns into bone

More information: Christina V. Theodoris et al. Long telomeres protect against age-dependent cardiac disease caused by NOTCH1 haploinsufficiency, Journal of Clinical Investigation (2017). DOI: 10.1172/JCI90338

Related Stories

Scientists discover why some heart tissue turns into bone

March 12, 2015
Researchers from the Gladstone Institutes have used human cells to discover how blood flow in the heart protects against the hardening of valves in cardiovascular disease. What's more, they've identified a potential way to ...

Is there a link between telomere length and cancer?

March 23, 2017
Telomeres are regions of repetitive DNA at the end of human chromosomes, which protect the end of the chromosome from damage. Whilst shorter telomeres are hypothesized biological markers of older age and have been linked ...

DNA damage response links short telomeres, heart disorder in Duchenne muscular dystrophy

October 31, 2016
Progressively shortening telomeres—the protective caps on the end of chromosomes—may be responsible for the weakened, enlarged hearts that kill many sufferers of Duchenne muscular dystrophy, according to a study by researchers ...

Telomere shortening affects muscular dystrophy gene

May 6, 2013
(Medical Xpress)—Facioscapulohumeral muscular dystrophy (FSHD) is a genetic disorder that causes the muscles of the upper body to waste away. It is unusual in that symptoms do not usually appear until sufferers are in their ...

Causal link between telomere shortening and Alzheimer's disease

October 13, 2015
In a newly published study, researchers at Karolinska Institutet show that the shortening of the telomeres – the caps at each end of the chromosomes in our cells – can be linked statistically to the active mechanism responsible ...

Study provides insights on chronic lung disease

June 15, 2015
A new study shows that shorter telomeres—which are the protective caps at the end of a cell's chromosomes—are linked with worse survival in a progressive respiratory disease called idiopathic pulmonary fibrosis (IPF). ...

Recommended for you

'Human chronobiome' study informs timing of drug delivery, precision medicine approaches

December 13, 2017
Symptoms and efficacy of medications—and indeed, many aspects of the human body itself—vary by time of day. Physicians tell patients to take their statins at bedtime because the related liver enzymes are more active during ...

Estrogen discovery could shed new light on fertility problems

December 12, 2017
Estrogen produced in the brain is necessary for ovulation in monkeys, according to researchers at the University of Wisconsin-Madison who have upended the traditional understanding of the hormonal cascade that leads to release ...

Time of day affects severity of autoimmune disease

December 12, 2017
Insights into how the body clock and time of day influence immune responses are revealed today in a study published in leading international journal Nature Communications. Understanding the effect of the interplay between ...

3-D printed microfibers could provide structure for artificially grown body parts

December 12, 2017
Much as a frame provides structural support for a house and the chassis provides strength and shape for a car, a team of Penn State engineers believe they have a way to create the structural framework for growing living tissue ...

Team identifies DNA element that may cause rare movement disorder

December 11, 2017
A team of Massachusetts General Hospital (MGH) researchers has identified a specific genetic change that may be the cause of a rare but severe neurological disorder called X-linked dystonia parkinsonism (XDP). Occurring only ...

Protein Daple coordinates single-cell and organ-wide directionality in the inner ear

December 11, 2017
Humans inherited the capacity to hear sounds thanks to structures that evolved millions of years ago. Sensory "hair cells" in the inner ear have the amazing ability to convert sound waves into electrical signals and transmit ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.