Scientists find a previously unknown role for the cerebellum

March 21, 2017 by Nathan Collins
Stanford researchers have found a previously unknown, cognitive role for the cerebellum’s granule cells, which show up as green in this image. Credit: Mark Wagner

Pity the cerebellum, tucked in the back of the brain mostly just keeping our muscles running smoothly. Its larger neighbor, the cerebrum, gets all the attention. It's the seat of intelligence, the home of thinking and planning. It's what separates humans from our less quick-witted ancestors. The cerebellum – which literally means "little brain" – is thought to just sit there helping us balance and breathe, like some kind of wee heating and ventilation system.

But maybe not for long. In a series of experiments published March 20 in Nature, Stanford researchers show that within the cerebellum respond to and learn to anticipate rewards, a first step toward a much more exciting future for the cerebrum's largely overlooked little brother and one that could open up new avenues of research for neuroscientists interested in the roots of cognition.

The conventional thinking: not thinking

Scientists had assumed the cerebellum helped control muscles mostly because of what happened when it got injured. "If you have disruption of the cerebellum, the first thing you see is a motor coordination defect," said the paper's senior author, Liqun Luo, an investigator at the Howard Hughes Medical Institute, professor of biology and member of Stanford Bio-X and the Stanford Neurosciences Institute.

Admittedly, there had been some hints of a larger role for the cerebellum, but scientists had a hard time following up on those hints in part because the neurons that make up most of the cerebellum are difficult to study. Those neurons, known as granule cells, account for 80 percent of the neurons in the brain – all packed into the cerebellum – but only about 10 percent of its volume. At that density, conventional techniques for recording cell activity don't work well, and without an effective way of studying granule cells in , scientists were left with an incomplete picture of what the cerebellum was really doing.

A new technology, and a helpful accident waiting to happen

Enter Mark Wagner, a postdoctoral fellow in Luo's lab who led the research with Tony Kim, a graduate student in the lab of Mark Schnitzer, an investigator at the Howard Hughes Medical Institute and an associate professor of biology and of applied physics. Wagner had not set out to redeem the cerebellum. He simply wanted to study how the cerebellum controls muscles in mice using a new technique that would allow him to record granule cells in real time.

Wagner had earned his PhD working with Schnitzer, who develops pioneering methods for imaging neuronal activity in fruit flies, mice and other living animals. One method, called two-photon calcium imaging, had the resolution Wagner needed to study mouse granule cells in action.

In order to study motor control, the team had to get the mice to move. In this case, mice received sugar water about a second after pushing a little lever. While the mice pushed levers and received their rewards, Wagner recorded activity in each mouse's granule cells, expecting to find that that activity in those cells would be related to planning and executing arm movements.

And to some extent he was right – some granule cells did fire when the animals moved. But other granule cells fired when the mice were waiting for their sugary rewards. And when Wagner sneakily took away their rewards, still other granule cells fired.

"It was actually a side observation, that, wow, they actually respond to reward," Luo said.

Putting the brain back together

That discovery is something of a revelation. For 50 years, the assumption was that granule – and by extension the cerebellum – performed only the most basic functions. But because no one had the tools to look closely at in action, "we just didn't know," Wagner said.

Now that scientists have a better idea of what's happening, Wagner's hope is that it could lead to something much bigger. "Given what a large fraction of neurons reside in the cerebellum, there's been relatively little progress made in integrating the cerebellum into the bigger picture of how the brain is solving tasks, and a large part of that disconnect has been this assumption that the can only be involved in motor tasks," Wagner said.

"I hope that this allows us to unify it with studies of more popular brain regions like the cerebral cortex, and we can put them together," Wager said, to figure out what's really going on inside our heads.

Explore further: Studies show that the cerebellum is crucial to understanding vulnerability to drug addiction

More information: Mark J. Wagner et al. Cerebellar granule cells encode the expectation of reward, Nature (2017). DOI: 10.1038/nature21726

Related Stories

Studies show that the cerebellum is crucial to understanding vulnerability to drug addiction

February 23, 2017
An international research team led by the Universitat Jaume I (UJI) has shown that the cerebellum, contrary to previous thought, fulfills functions that go beyond the motor sphere and can be co-responsible for the brain alterations ...

Dysfunction in cerebellar Calcium channel causes motor disorders and epilepsy

March 21, 2013
A dysfunction of a certain Calcium channel, the so called P/Q-type channel, in neurons of the cerebellum is sufficient to cause different motor diseases as well as a special type of epilepsy. This is reported by the research ...

Scientists find new clues to brain's wiring

July 18, 2014
New research provides an intriguing glimpse into the processes that establish connections between nerve cells in the brain. These connections, or synapses, allow nerve cells to transmit and process information involved in ...

Unlocking the secrets of nerve regeneration

June 29, 2016
Scientists at Hokkaido University, Japan, found that a glutamate receptor GluD2 was responsible for the regeneration of synapses in the cerebellum.

Researchers finds mechanism affecting alcohol consumption

August 30, 2016
A Washington State University researcher has found a mechanism that strongly influences whether or not an animal is likely to drink a lot of alcohol.

Recommended for you

Brain stimulation may improve cognitive performance in people with schizophrenia

July 24, 2017
Brain stimulation could be used to treat cognitive deficits frequently associated with schizophrenia, according to a new study from King's College London.

New map may lead to drug development for complex brain disorders, researcher says

July 24, 2017
Just as parents are not the root of all their children's problems, a single gene mutation can't be blamed for complex brain disorders like autism, according to a Keck School of Medicine of USC neuroscientist.

Bird songs provide insight into how developing brain forms memories

July 24, 2017
Researchers at the University of Chicago have demonstrated, for the first time, that a key protein complex in the brain is linked to the ability of young animals to learn behavioral patterns from adults.

Working around spinal injuries: Rehabilitation, drug treatment lets rats recover some involuntary movement

July 24, 2017
A new study in rats shows that changes in the brain after spinal cord injury are necessary to restore at least some function to lower limbs. The work was published recently in the journal eLife.

Scientists capture first image of major brain receptor in action

July 24, 2017
Columbia University Medical Center (CUMC) researchers have captured the first three-dimensional snapshots of the AMPA-subtype glutamate receptor in action. The receptor, which regulates most electrical signaling in the brain, ...

Research identifies new brain death pathway in Alzheimer's disease

July 24, 2017
Alzheimer's disease tragically ravages the brains, memories and ultimately, personalities of its victims. Now affecting 5 million Americans, Alzheimer's disease is the sixth leading cause of death in the U.S., and a cure ...

1 comment

Adjust slider to filter visible comments by rank

Display comments: newest first

thingumbobesquire
5 / 5 (1) Mar 21, 2017
There are more things in heaven and earth, Horatio, Than are dreamt of in your philosophy.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.