Actress Kiruna Stamell debates gene editing with ethicist Dr. Christopher Gyngell

April 27, 2017

Two papers published today by the Journal of the Royal Society of Medicine, debate gene editing and the health of future generations. Stage and screen actress Kiruna Stamell, who has a rare form of dwarfism, proposes that gene editing does not represent an improvement in healthcare; while Dr Christopher Gyngell, a research fellow at the Oxford Uehiro Centre for Practical Ethics, argues that provided it is well regulated, gene editing could greatly improve the health of our descendants.

Stamell writes that if gene editing is used simply to 'disappear' certain conditions and thus certain types of people, we must look at the ethics and impact of this more broadly and redefine what it means to be 'healthy' on a micro and macro level.

She believes that gene editing has far-reaching complications that affect more than individual health. She says: "Gene editing, if only available to certain groups, will drive social inequality further as those who can't afford it are left behind or discriminated against for having been born, when the opportunity was there for them to never have existed at all."

Stamell asks: "Will those people be left unsupported by a society that prefers to weed them out rather than allow them access and a share of its wealth and benefits?" She voices concern for as variation is edited out. "Small differences begin to be perceived as greater ones and society's ability to adapt and accommodate differences will shrink" she says. She concludes that a community of people who have forgotten how to adapt and embrace diversity can't be healthy for anyone.

Gyngell discusses the difficult and complex questions raised about disability, diversity and risks to human health. How to distinguish healthy forms of human diversity from disease and disability is, he writes, a subject of intense debate in philosophy but we should not let conceptual uncertainty be a barrier to the development of gene editing.

The use of gene editing in research, he writes, will greatly increase our knowledge of development and could lead to novel treatments for disease. He says: "Using gene editing to study early development could lead to a greater understanding of the causes of infertility and to better treatment options."

Gyngell goes onto describe how gene editing will be able to correct the mutations associated with fatal genetic disorders such as Tay Sachs disease and Duchenne muscular dystrophy. The incidence of these conditions can be reduced by using genetic selection techniques but, according to Gyngell, we may have reasons to prefer gene editing. He says: "Selection prevents disease by changing who comes into existence, whereas gene editing ensures those who come into existence have the best shot of living a full life."

Gyngell concludes that a case-by-case system of regulation for could work to both reduce rates of and avoid risking traits that may represent valuable types of diversity.

Explore further: Will AAV vectors have a role in future novel gene therapy approaches?

More information: Christopher Gyngell. Gene editing and the health of future generations, Journal of the Royal Society of Medicine (2017). DOI: 10.1177/0141076817705616

Kiruna Stamell. Why gene editing isn't the answer, Journal of the Royal Society of Medicine (2017). DOI: 10.1177/0141076817706278

Related Stories

Will AAV vectors have a role in future novel gene therapy approaches?

March 20, 2017
Recombinant adeno-associated virus (rAAV) vectors for delivering therapeutic genes have demonstrated their safety in multiple diseases and clinical settings over the years and are a proven and effective tool that can be used ...

Gene-editing alternative corrects Duchenne muscular dystrophy

April 12, 2017
Using the new gene-editing enzyme CRISPR-Cpf1, researchers at UT Southwestern Medical Center have successfully corrected Duchenne muscular dystrophy in human cells and mice in the lab.

Gene editing could help tackle cancer and inherited diseases

February 20, 2017
Gene editing techniques developed in the last five years could help in the battle against cancer and inherited diseases, a University of Exeter scientist says.

Gene editing of blood stem cells can correct disease-causing mutations

September 23, 2016
Recent advances in gene editing technology, which allows for targeted repair of disease-causing mutations, can be applied to hematopoietic stem cells with the potential to cure a variety of hereditary and congenital diseases. ...

Recommended for you

Researchers drill down into gene behind frontotemporal lobar degeneration

October 19, 2017
Seven years ago, Penn Medicine researchers showed that mutations in the TMEM106B gene significantly increased a person's risk of frontotemporal lobar degeneration (FTLD), the second most common cause of dementia in those ...

New clues to treat Alagille syndrome from zebrafish

October 18, 2017
A new study led by researchers at Sanford Burnham Prebys Medical Discovery Institute (SBP) identifies potential new therapeutic avenues for patients with Alagille syndrome. The discovery, published in Nature Communications, ...

Genetic variants associated with obsessive-compulsive disorder identified

October 18, 2017
(Medical Xpress)—An international team of researchers has found evidence of four genes that can be linked to obsessive-compulsive disorder (OCD). In their paper published in the journal Nature Communications, the group ...

An architect gene is involved in the assimilation of breast milk

October 17, 2017
A family of "architect" genes called Hox coordinates the formation of organs and limbs during embryonic life. Geneticists from the University of Geneva (UNIGE) and the Swiss Federal Institute of Technology in Lausanne (EPFL), ...

Study identifies genes responsible for diversity of human skin colors

October 12, 2017
Human populations feature a broad palette of skin tones. But until now, few genes have been shown to contribute to normal variation in skin color, and these had primarily been discovered through studies of European populations.

Genes critical for hearing identified

October 12, 2017
Fifty-two previously unidentified genes that are critical for hearing have been found by testing over 3,000 mouse genes. The newly discovered genes will provide insights into the causes of hearing loss in humans, say scientists ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.