Using CRISPR to reverse retinitis pigmentosa and restore visual function

April 21, 2017
A confocal micrograph of mouse retina depicting optic fiber layer. Credit: Image courtesy of National Center for Microscopy and Imaging Research, UC San Diego.

Using the gene-editing tool CRISPR/Cas9, researchers at University of California San Diego School of Medicine and Shiley Eye Institute at UC San Diego Health, with colleagues in China, have reprogrammed mutated rod photoreceptors to become functioning cone photoreceptors, reversing cellular degeneration and restoring visual function in two mouse models of retinitis pigmentosa.

The findings are published in the April 21 advance online issue of Cell Research.

Retinitis pigmentosa (RP) is a group of inherited vision disorders caused by numerous mutations in more than 60 genes. The mutations affect the eyes' photoreceptors, specialized in the retina that sense and convert light images into electrical signals sent to the brain. There are two types: rod cells that function for night vision and peripheral vision, and cone cells that provide central vision (visual acuity) and discern color. The human retina typically contains 120 million rod cells and 6 million cone cells.

In RP, which affects approximately 100,000 Americans and 1 in 4,000 persons worldwide, rod-specific genetic mutations cause rod photoreceptor cells to dysfunction and degenerate over time. Initial symptoms are loss of peripheral and night vision, followed by diminished visual acuity and color perception as cone cells also begin to fail and die. There is no treatment for RP. The eventual result may be legal blindness.

In their published research, a team led by senior author Kang Zhang, MD, PhD, chief of ophthalmic genetics, founding director of the Institute for Genomic Medicine and co-director of biomaterials and tissue engineering at the Institute of Engineering in Medicine, both at UC San Diego School of Medicine, used CRISPR/Cas9 to deactivate a master switch gene called Nrl and a downstream transcription factor called Nr2e3.

CRISPR, which stands for Clustered Regularly Interspaced Short Palindromic Repeats, allows researchers to target specific stretches of genetic code and edit DNA at precise locations, modifying select gene functions. Deactivating either Nrl or Nr2e3 reprogrammed to become cone cells.

"Cone cells are less vulnerable to the genetic mutations that cause RP," said Zhang. "Our strategy was to use gene therapy to make the underlying mutations irrelevant, resulting in the preservation of tissue and vision."

The scientists tested their approach in two different mouse models of RP. In both cases, they found an abundance of reprogrammed and preserved cellular architecture in the retinas. Electroretinography testing of rod and cone receptors in live mice show improved function.

Zhang said a recent independent study led by Zhijian Wu, PhD, at National Eye Institute, part of the National Institutes of Health, also reached similar conclusions.

The researchers used adeno-associated virus (AAV) to perform the gene therapy, which they said should help advance their work to human clinical trials quicker. "AAV is a common cold virus and has been used in many successful treatments with a relatively good safely profile," said Zhang. "Human clinical trials could be planned soon after completion of preclinical study. There is no treatment for RP so the need is great and pressing. In addition, our approach of reprogramming mutation-sensitive cells to mutation-resistant cells may have broader application to other human diseases, including cancer."

Explore further: Scientists deploy CRISPR to preserve photoreceptors in mice

More information: Jie Zhu et al, Gene and mutation independent therapy via CRISPR-Cas9 mediated cellular reprogramming in rod photoreceptors, Cell Research (2017). DOI: 10.1038/cr.2017.57

Related Stories

Scientists deploy CRISPR to preserve photoreceptors in mice

March 14, 2017
Silencing a gene called Nrl in mice prevents the loss of cells from degenerative diseases of the retina, according to a new study. The findings could lead to novel therapies for preventing vision loss from human diseases ...

Altering eye cells may one day restore vision

January 25, 2013
(Medical Xpress)—Doctors may one day treat some forms of blindness by altering the genetic program of the light-sensing cells of the eye, according to scientists at Washington University School of Medicine in St. Louis.

Fish eyes to help understand human inherited blindness

April 5, 2017
Newborns babies can be at risk of congenital blindness, presenting sight defects due to lesions or to genetic mutations in their genome. Among the latter, Leber Congenital Amaurosis—or LCA—is one of the most widespread ...

Improving the view on the genetic causes of retinitis pigmentosa

January 17, 2017
Progressive development of night blindness and tunnel vision, sometimes from the early age of 2, are trademarks of retinitis pigmentosa. Being the most common inherited disorder of the retina, retinitis pigmentosa affects ...

A world without color—researchers find gene mutation that strips color, reduces vision

June 1, 2015
People with achromatopsia, an inherited eye disorder, see the world literally in black and white. Worse yet, their extreme sensitivity to light makes them nearly blind in bright sunlight. Now, researchers at University of ...

Recommended for you

Researchers report startling glaucoma protein discovery

October 20, 2017
A discovery in a protein associated with glaucoma was so unheard of that for over two years, researchers ran it through a gauntlet of lab tests and published a new research paper on it. The tests validated what they initially ...

Curve-eye-ture: How to grow artificial corneas

October 19, 2017
Scientists at Newcastle University, UK, and the University of California have developed a new method to grow curved human corneas improving the quality and transparency - solely by controlling the behaviour of cells in a ...

Clinical study success for novel contact lens device aimed to improve glaucoma treatment

October 19, 2017
A novel contact lens device developed by University of Liverpool engineers to improve the treatment of glaucoma has been found to reliably track pressure changes in the eye and be wearable by people who took part in its first ...

Study indicates proof of concept for using a surrogate liquid biopsy to provide genetic profile of retinoblastoma tumors

October 12, 2017
Retinoblastoma is a tumor of the retina that generally affects children under 5 years of age. If not diagnosed early, retinoblastoma may result in loss of one or both eyes and can be fatal. Unlike most cancers that are diagnosed ...

Farsighted children struggle with attention, study finds

October 10, 2017
Farsighted preschoolers and kindergartners have a harder time paying attention and that could put them at risk of slipping behind in school, a new study suggests.

New drug reduces rate of progression of incurable eye disease

October 4, 2017
An international study including researchers from the Centre for Eye Research Australia (CERA) has found a way to slow the progression of dry age-related macular degeneration (AMD) - one of the most common causes of vision ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.