'Genetic scalpel' can manipulate the microbiome, study shows

April 20, 2017
Credit: CC0 Public Domain

The gut microbiome is crucial to health, encompassing bacterial communities that possess a hundred times more genes than the human genome. Its complexity has hampered investigation of possible roles of the microbiome in a host of maladies, including infectious and autoimmune diseases, obesity, and even behavioral disorders.

Yale University researchers have developed new methods for regulating gene activity in a widespread group of microbiome bacteria in the gut of living mice—a crucial step in understanding microbiome's impact on health and disease, they report in the April 20 issue of the journal Cell.

"We and others have been frustrated with the clumsy tools available for studying the microbiome—it felt like trying to perform surgery with boxing gloves," said Andrew Goodman, associate professor of microbial pathogenesis at the Microbial Sciences Institute at West Campus and senior author of the paper. "We hope these new methods replace the boxing gloves with a scalpel."

First author Bentley Lim, along with Michael Zimmermann and Natasha Barry in the Goodman lab, engineered a "dimmer switch" for controlling gene expression in Bacteroides, the most common family of bacteria found in the . This switch can turn up, down, or off in response to an artificial chemical not found in mice or their diets. By simply adding or withdrawing this chemical from the mouse's drinking water, the researchers were able to precisely track in real time the effects of altering in the microbiome inside the gut of living mice.

The team used these tools to understand how pathogens dine off sugars that microbiome bacteria strip from the gut wall in their search for food. By controlling the timing and extent of this activity, the researchers were able to measure how long these leftovers remain available for pathogens. The findings help explain how antibiotics counterintuitively increase the levels of these delicacies for pathogens and may one day help create more effective infectious disease therapies, the authors say.

"We can now study in various states and pinpoint specific genes and pathways involved in a variety of functions," Lim said. "If we are to find ways to intervene in these processes, we must first understand them at this level."

Explore further: Research explains how we live in harmony with friendly gut bacteria

Related Stories

Research explains how we live in harmony with friendly gut bacteria

January 9, 2015
Stability in the composition of the hundred trillion bacterial cells in the human gastrointestinal tract is crucial to health, but scientists have been perplexed how our microbiota withstands an onslaught of toxins, dietary ...

'FishTaco' sorts out who is doing what in your microbiome

January 19, 2017
A growing body of evidence indicates that the trillions of microbes that live on and inside our bodies affect our health. Collectively, these resident microbes form our microbiome.

A specially tailored gut microbiome alleviates hyperammonemia in mice

June 22, 2015
The microbiome of the human intestine consists of a variety of bacteria that assist in digestion, immune regulation, and other processes that are critical for human health. A subset of these bacteria produces urease, an enzyme ...

Making the microbiome part of precision medicine

November 1, 2016
Studies of the microbiome should be integral to future precision medicine initiatives, argue scientists from the University of Chicago in a new commentary published Nov. 1 in Trends in Pharmacological Sciences.

Recommended for you

Scientists find key to regenerating blood vessels

November 23, 2017
A new study led by researchers at Sanford Burnham Prebys Medical Discovery Institute (SBP) identifies a signaling pathway that is essential for angiogenesis, the growth of new blood vessels from pre-existing vessels. The ...

Researchers find infectious prions in Creutzfeldt-Jakob disease patient skin

November 22, 2017
Creutzfeldt-Jakob disease (CJD)—the human equivalent of mad cow disease—is caused by rogue, misfolded protein aggregates termed prions, which are infectious and cause fatal damages in the patient's brain. CJD patients ...

Surprising roles for muscle in tissue regeneration, study finds

November 22, 2017
A team of researchers at Whitehead has illuminated an important role for different subtypes of muscle cells in orchestrating the process of tissue regeneration. In a paper published in the November 22 issue of Nature, they ...

Study reveals new mechanisms of cell death in neurodegenerative disorders

November 22, 2017
Researchers at King's College London have discovered new mechanisms of cell death, which may be involved in debilitating neurodegenerative disorders, such as Alzheimer's disease and Parkinson's disease.

How rogue immune cells cross the blood-brain barrier to cause multiple sclerosis

November 21, 2017
Drug designers working on therapeutics against multiple sclerosis should focus on blocking two distinct ways rogue immune cells attack healthy neurons, according to a new study in the journal Cell Reports.

New simple test could help cystic fibrosis patients find best treatment

November 21, 2017
Several cutting-edge treatments have become available in recent years to correct the debilitating chronic lung congestion associated with cystic fibrosis. While the new drugs are life-changing for some patients, they do not ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.