New method could deliver DNA-based vaccines in pill form

April 11, 2017, University of Nebraska-Lincoln

A microscopic corn-and-shrimp cocktail could eventually make DNA-based vaccinations and cancer-treating gene therapies an easier pill to swallow, according to new research from the University of Nebraska-Lincoln.

In a recent study, the researchers demonstrated that nesting a specialized nanoparticle inside a microparticle could protect engineered genes or virus-derived DNA against the rigors of the stomach and ensure safe passage to the intestine. Once there, that synthetic DNA could potentially enter cells to trigger the production of either disease-fighting proteins or antibodies essential to building immunity, the study found.

The authors built the microparticle from a corn-based protein called zein (ZEEN') and assembled its corresponding nanoparticle from chitosan (KY'-tuh-san), a derivative of the shells that house shrimp and other crustaceans. If further refined, its design could eventually help the pill join the syringe as a delivery system for DNA, the team said.

"The overall idea is to be able to produce vaccines that can be distributed globally," said Deb Brown, associate professor of biological sciences and member of the Nebraska Center for Virology. "An oral route of administration could circumvent many of the barriers to global vaccination strategies."

Among those barriers: the refrigeration needed to maintain a vaccine's potency and the medical personnel necessary to deliver it. By reducing or eliminating those needs, ingestible versions would expand the geographic reach of vaccines while potentially accelerating their delivery by months, the researchers said.

"You can use a gene in the (viral) pathogen to produce the vaccine," said Angela Pannier, associate professor of biological systems engineering. "You take that gene, sequence it, put it into your synthetic piece of DNA and deliver it. Cells take up that pathogen gene and (manufacture) its product to generate an .

"DNA can be easily and quickly synthesized, so once we identify the strain ... we could go into the lab and within weeks have a vaccine mobilized. Right now, we have to produce (some) vaccines way in advance - usually six to 12 months out - given the time it takes to manufacture them. And if it's a pill, you don't need a nurse or a doctor to give a shot."

Pannier and her colleagues previously looked at whether a standalone zein microparticle could ferry DNA into the intestine. Though the zein maintained its integrity through the stomach, the enzymes of the intestine degraded it and left the DNA "just floating around," Pannier said.

"But targeting the vast amount of immune tissue present in the intestinal tract was a priority," said Amanda Ramer-Tait, assistant professor of food science and member of the Nebraska Food for Health Center.

So the team decided to add the chitosan chestnut, using a compound called sodium tripolyphosphate to help it encapsulate the DNA. After optimizing the bi-particle's ability to carry, protect and deliver DNA, the team tested it by exposing it to conditions resembling those of the stomach and intestine.

The bi-particle maintained between 50 and 70 percent of its DNA cargo when placed in a gastric fluid for 45 minutes, the average time it would spend in the stomach before moving to the intestine. The researchers then gave it an enzyme-heavy intestinal bath and introduced it to cultured cells, finding that the remaining DNA managed to enter the cells and initiate protein production.

When the team later fed the particle to mice, they began showing initial signs of the desired immune response. That antibody production approximated the levels found when the mice were instead injected with a traditional protein-based .

Though doctoral student Eric Farris acknowledged that the team needs to boost the design's carrying capacity and delivery in order to generate a "full-on, robust" immune response, he said it compares favorably with other reported approaches to particle-based DNA delivery. No DNA-based vaccines currently exist for humans, but their potential advantages - along with their emergence in veterinary settings - are propelling efforts to perfect them.

According to Pannier, the team's design boasts an overlooked but important advantage that should become more apparent as DNA vaccines become a reality.

"Other engineers in the field have made some pretty amazing, fantastic polymers that are highly complicated," said Pannier, a member of the Nebraska Center for Materials and Nanoscience. "But simple things are probably what are going to make it to the clinic - for scale-up, for production - so we're (looking at) two highly abundant materials."

Even as the team considers how ingestible vaccines and gene therapies can benefit developing countries, Pannier envisions them appealing to anyone with a fear of needles.

"If anyone's ever been to the flu clinic with children..." she said with a laugh.

Pannier, Brown, Ramer-Tait and Farris reported their findings in the Journal of Controlled Release. They received support from the Nebraska Research Initiative; the National Science Foundation; the National Institute of General Medical Sciences, part of the National Institutes of Health, under grant number P20GM104320; the U.S. Department of Agriculture; and the American Heart Association.

Explore further: 'Dose sparing' flu vaccine could boost productivity and vaccine availability

More information: Eric Farris et al, Chitosan-zein nano-in-microparticles capable of mediating in vivo transgene expression following oral delivery, Journal of Controlled Release (2017). DOI: 10.1016/j.jconrel.2017.01.035

Related Stories

'Dose sparing' flu vaccine could boost productivity and vaccine availability

April 5, 2017
The currently licensed seasonal trivalent influenza vaccines contain 15 micrograms of viral hemagglutinin protein per strain for adults, and up to 60 micrograms for elderly individuals; however, due to recent shortages, reducing ...

New Zika vaccine candidate protects mice and monkeys with a single dose

February 2, 2017
A new Zika vaccine candidate has the potential to protect against the virus with a single dose, according to a research team led by scientists from the Perelman School of Medicine at the University of Pennsylvania. As reported ...

A novel DNA vaccine design improves chances of inducing anti-tumor immunity

February 24, 2017
Scientists at The Wistar Institute and Inovio Pharmaceuticals, Inc. have devised a novel DNA vaccine approach through molecular design to improve the immune responses elicited against one of the most important cancer antigen ...

Recommended for you

Scientists gain new insight on how antibodies interact with widespread respiratory virus

February 22, 2018
Scientists have found and characterized the activity of four antibodies produced by the human immune system that target an important protein found in respiratory syncytial virus (RSV), according to new research published ...

Study reveals how kidney disease happens

February 22, 2018
Monash researchers have solved a mystery, revealing how certain immune cells work together to instigate autoimmune kidney disease.

Past encounters with the flu shape vaccine response

February 20, 2018
New research on why the influenza vaccine was only modestly effective in recent years shows that immune history with the flu influences a person's response to the vaccine.

Building better tiny kidneys to test drugs and help people avoid dialysis

February 16, 2018
A free online kidney atlas built by USC researchers empowers stem cell scientists everywhere to generate more human-like tiny kidneys for testing new drugs and creating renal replacement therapies.

Study suggests expanded range for emerging tick-borne disease

February 16, 2018
Human cases of Borrelia miyamotoi, a tick-borne infection with some similarities to Lyme disease, were discovered in the eastern United States less than a decade ago. Now new research led by the Yale School of Public Health ...

Expanding Hepatitis C testing to all adults is cost-effective and improves outcomes

February 16, 2018
According to a new study, screening all adults for hepatitis C (HCV) is a cost-effective way to improve clinical outcomes of HCV and identify more infected people compared to current recommendations. Using a simulation model, ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.