Study in mice identifies neurons that sense touch and motion

April 20, 2017
Touch is normally active, resulting from self-motion. Merkel afferents (top right, green and magenta) "fired" action potentials (white) during both movement and touch as mice ran on a treadmill and moved their whiskers to explore. Merkel afferents were identified by genetically altering them to fire when exposed to blue light (bottom left, bolt), not just to movement and touch. Credit: Daniel O'Connor, Ph.D., Johns Hopkins University School of Medicine

Working with genetically engineered mice—and especially their whiskers—Johns Hopkins researchers report they have identified a group of nerve cells in the skin responsible for what they call "active touch," a combination of motion and sensory feeling needed to navigate the external world. The discovery of this basic sensory mechanism, described online April 20 in the journal Neuron, advances the search for better "smart" prosthetics for people, ones that provide more natural sensory feedback to the brain during use.

Study leader Daniel O'Connor, Ph.D., assistant professor of neuroscience at the Johns Hopkins University School of Medicine, explains that over the past several decades, researchers have amassed a wealth of knowledge about the sense of touch. "You can open up textbooks and read all about the different types of sensors or receptor cells in the skin," he says. "However, almost everything we know is from experiments where tactile stimulation was applied to the stationary skin—in other words, passive touch."

Such "passive touch," O'Connor adds, isn't how humans and other animals normally explore their world. For example, he says, people entering a dark room might search for a light switch by actively feeling the wall with their hands. To tell if an object is hard or soft, they'd probably need to press it with their fingers. To see if an object is smooth or rough, they'd scan their fingers back and forth across an object's surface.

Each of these forms of touch combined with motion, he says, is an active way of exploring the world, rather than waiting to have a touch stimulus presented. They each also require the ability to sense a body part's relative position in space, an ability known as proprioception.

While some research has suggested that the same populations of nerve cells, or neurons, might be responsible for sensing both proprioception and touch necessary for this sensory-motor integration, whether this was true and which neurons accomplish this feat have been largely unknown, O'Connor says.

To find out more, O'Connor and his team developed an experimental system with mice that allowed them to record from specific neurons located in the skin, during both touch and motion.

The researchers accomplished this, they report, by working with members of a laboratory led by David Ginty, Ph.D., a former Johns Hopkins University faculty member, now at Harvard Medical School, to develop genetically altered mice. In these animals, a type of sensory neuron in the skin called Merkel afferents were mutated so that they responded to touch—their "native" stimulus, and one long documented in previous research—but also to blue light, which skin don't normally respond to.

The scientists trained the rodents to run on a mouse-sized treadmill that had a small pole attached to the front that was motorized to move to different locations. Before the mice started running, the researchers used their touch-and-light sensitized system to find a single Merkel afferent near each animal's whiskers and used an electrode to measure the electrical signals from this neuron.

Much like humans use their hands to explore the world through touch, mice use their whiskers, explains O'Connor. Consequently, as the animals began running on the treadmill, they moved their whiskers back and forth in a motion that researchers call "exploratory whisking."

Using a high-speed camera focused on the animals' whiskers, the researchers took nearly 55,000,000 frames of video while the mice ran and whisked. They then used computer-learning algorithms to separate the movements into three different categories: when the rodents weren't whisking or in contact with the pole; when they were whisking with no contact; or when they were whisking against the pole.

They then connected each of these movements—using video snapshots captured 500 times every second—to the electrical signals coming from the animals' blue-light-sensitive Merkel afferents.

The results show that the Merkel afferents produced action potentials—the electrical spikes that neurons use to communicate with each other and the brain—when their associated whiskers contacted the pole. That finding wasn't particularly surprising, O'Connor says, because of these neurons' well-established role in touch.

However, he says, the Merkel afferents also responded robustly when they were moving in the air without touching the pole. By delving into the specific electrical signals, the researchers discovered that the action potentials precisely related to a whisker's position in space. These findings suggest that Merkel afferents play a dual role in touch and proprioception, and in the sensory-motor integration necessary for active touch, O'Connor says.

Although these findings are particular to mouse whiskers, he cautions, he and his colleagues believe that Merkel afferents in humans could serve a similar function, because many anatomical and physiological properties of Merkel afferents appear similar across a range of species, including mice and humans.

Besides shedding light on a basic biological question, O'Connor says, his team's research could also eventually improve artificial limbs and digits. Some prosthetics are now able to interface with the human brain, allowing users to move them using directed brain signals. While this motion is a huge advance beyond traditional static prosthetics, it still doesn't allow the smooth movement of natural limbs. By integrating signals similar to those produced by Merkel afferents, he explains, researchers might eventually be able to create prosthetics that can send signals about and proprioception to the brain, allowing movements akin to native limbs.

Explore further: Fighting pain through knowledge about sensory organs in the fingertips

Related Stories

Fighting pain through knowledge about sensory organs in the fingertips

October 12, 2016
That a finger can distinguish the texture of satin from suede is an exquisite sensory discrimination largely relying on small sensory organs in the fingertips called Merkel discs. Jianguo Gu, Ph.D., of the University of Alabama ...

Merkel cells are initial sites for sensing touch, researchers prove

April 15, 2014
By solving a long standing scientific mystery, the common saying "you just hit a nerve" might need to be updated to "you just hit a Merkel cell," jokes Jianguo Gu, PhD, a pain researcher at the University of Cincinnati (UC).

Study finds new mechanism to control information flow in the brain

March 2, 2017
Specialized nerve cells, known as somatostatin-expressing (Sst) interneurons, in the outer part of the mammalian brain (or cerebral cortex)—play a key role in controlling how information flows in the brain when it is awake ...

Scientists identify key cells in touch sensation

April 6, 2014
In a study published in the April 6 online edition of the journal Nature, a team of Columbia University Medical Center researchers led by Ellen Lumpkin, PhD, associate professor of somatosensory biology, solve an age-old ...

Recommended for you

Researchers find monkey brain structure that decides if viewed objects are new or unidentified

August 18, 2017
A team of researchers working at the University of Tokyo School of Medicine has found what they believe is the part of the monkey brain that decides if something that is being viewed is recognizable. In their paper published ...

Study of nervous system cells can help to understand degenerative diseases

August 18, 2017
The results of a new study show that many of the genes expressed by microglia differ between humans and mice, which are frequently used as animal models in research on Alzheimer's disease and other neurodegenerative disorders.

How whip-like cell appendages promote bodily fluid flow

August 18, 2017
Researchers at Nagoya University have identified a molecule that enables cell appendages called cilia to beat in a coordinated way to drive the flow of fluid around the brain; this prevents the accumulation of this fluid, ...

Researchers make surprising discovery about how neurons talk to each other

August 17, 2017
Researchers at the University of Pittsburgh have uncovered the mechanism by which neurons keep up with the demands of repeatedly sending signals to other neurons. The new findings, made in fruit flies and mice, challenge ...

Neurons involved in learning, memory preservation less stable, more flexible than once thought

August 17, 2017
The human brain has a region of cells responsible for linking sensory cues to actions and behaviors and cataloging the link as a memory. Cells that form these links have been deemed highly stable and fixed.

How we recall the past: Neuroscientists discover a brain circuit dedicated to retrieving memories

August 17, 2017
When we have a new experience, the memory of that event is stored in a neural circuit that connects several parts of the hippocampus and other brain structures. Each cluster of neurons may store different aspects of the memory, ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.