Man moves paralyzed legs using device that stimulates spinal cord

April 3, 2017
Credit: Mayo Clinic

Mayo Clinic researchers used electrical stimulation on the spinal cord and intense physical therapy to help a man intentionally move his paralyzed legs, stand and make steplike motions for the first time in three years.

The case, the result of collaboration with UCLA researchers, appears today in Mayo Clinic Proceedings. Researchers say these results offer further evidence that a combination of this technology and rehabilitation may help with regain control over previously paralyzed movements, such as steplike actions, balance control and standing.

"We're really excited, because our results went beyond our expectations," says neurosurgeon Kendall Lee, M.D., Ph.D., principal investigator and director of Mayo Clinic's Neural Engineering Laboratory. "These are initial findings, but the patient is continuing to make progress."

The 26-year-old patient injured his spinal cord at the sixth thoracic vertebrae in the middle of his back three years earlier. He was diagnosed with a motor complete spinal cord injury, meaning he could not move or feel anything below the middle of his torso.

The study started with the patient going through 22 weeks of physical therapy. He had three training sessions a week to prepare his muscles for attempting tasks during . He was tested for changes regularly. Some results led researchers to characterize his injury further as discomplete, suggesting dormant connections across his injury may remain.

Following physical therapy, he underwent surgery to implant an electrode in the epidural space near the spinal cord below the injured area. The electrode is connected to a computer-controlled device under the skin in the patient's abdomen. This device, for which Mayo Clinic received permission from the U.S. Food and Drug Administration for off-label use, sends electrical current to the spinal cord, enabling the patient to create movement.

After a three-week recovery period from surgery, the patient resumed with stimulation settings adjusted to enable movements. In the first two weeks, he intentionally was able to:

  • Control his muscles while lying on his side, resulting in leg movements
  • Make steplike motions while lying on his side and standing with partial support
  • Stand independently using his arms on support bars for balanceIntentional, or volitional, movement means the patient's brain is sending a signal to motor neurons in his spinal cord to move his legs purposefully.

"This has really set the tone for our post-surgical rehabilitation - trying to use that function the patient recovered to drive even more return of abilities," says Kristin Zhao, Ph.D., co-principal investigator and director of Mayo Clinic's Assistive and Restorative Technology Laboratory.

The Mayo researchers worked closely with the team of V. Reggie Edgerton, Ph.D., at UCLA on this study, which replicates earlier research done at the University of Louisville. The Mayo study marks the first time a patient intentionally controlled previously paralyzed functions within the first two weeks of stimulation.

The data suggest that people with discomplete injuries may be candidates for epidural stimulation therapy. However, more research is needed into how a discomplete injury contributes to recovering function.

Teams from Mayo Clinic's departments of Neurosurgery and Physical Medicine and Rehabilitation, and the Division of Engineering collaborated on this project.

"While these are early results, it speaks to how Mayo Clinic researchers relentlessly pursue discoveries and innovative solutions that address the unmet needs of patients," says Gregory Gores, M.D., executive dean of research, Mayo Clinic. "These teams highlight Mayo Clinic's unique culture of collaboration, which brings together scientists and physician experts who work side by side to accelerate scientific discoveries into critical advances for patient care."

Explore further: Repeated stimulation treatment can restore movement to paralyzed muscles

More information: Peter J. Grahn et al. Enabling Task-Specific Volitional Motor Functions via Spinal Cord Neuromodulation in a Human With Paraplegia, Mayo Clinic Proceedings (2017). DOI: 10.1016/j.mayocp.2017.02.014

Related Stories

Repeated stimulation treatment can restore movement to paralyzed muscles

July 15, 2016
Conducted at the BioMag laboratory at the Helsinki University Hospital, a new patient study could open a new opportunity to rehabilitate patients with spinal cord damage.

Spinal cord injury patients face many serious health problems besides paralysis

February 16, 2017
Paralysis is just one of the many serious health problems faced by patients who suffer spinal cord injuries.

Potential target for restoring ejaculation in men with spinal cord injuries or ejaculatory disorders

December 5, 2016
New research provides insights on how to restore the ability to ejaculate in men who are not able to do so.

Health behaviors and management critical for spinal cord injury patients

August 11, 2016
It can happen in a split second from a vehicle crash, a fall or a gunshot: a person's spinal cord tissue is bruised or torn by a shocking blow.

Spinal cord stimulation is a safe, effective drug-free treatment for chronic pain

July 14, 2016
Chronic pain affects up to 20% of people in developed countries, and represents not only a profound impact on individuals and their families but also a sizeable burden on employers, health care systems, and society in general. ...

Researchers use vagus nerve stimulation outside the forebrain

November 17, 2015
A group of leading clinicians and experts dedicated to translational research in spinal cord injuries has recognized the work of a research fellow in the Texas Biomedical Device Center at UT Dallas.

Recommended for you

Researchers create tool to measure, control protein aggregation

October 22, 2017
A common thread ties seemingly unlinked disorders like Alzheimer's disease and type II diabetes together. This thread is known as protein aggregation and happens when proteins clump together. These complexes are a hallmark ...

'Selfish brain' wins out when competing with muscle power, study finds

October 20, 2017
Human brains are expensive - metabolically speaking. It takes lot of energy to run our sophisticated grey matter, and that comes at an evolutionary cost.

Researchers find shifting relationship between flexibility, modularity in the brain

October 19, 2017
A new study by Rice University researchers takes a step toward what they see as key to the advance of neuroscience: a better understanding of the relationship between the brain's flexibility and its modularity.

Want to control your dreams? Here's how

October 19, 2017
New research at the University of Adelaide has found that a specific combination of techniques will increase people's chances of having lucid dreams, in which the dreamer is aware they're dreaming while it's still happening ...

Brain training can improve our understanding of speech in noisy places

October 19, 2017
For many people with hearing challenges, trying to follow a conversation in a crowded restaurant or other noisy venue is a major struggle, even with hearing aids. Now researchers reporting in Current Biology on October 19th ...

Investigating the most common genetic contributor to Parkinson's disease

October 19, 2017
LRRK2 gene mutations are the most common genetic cause of Parkinson's disease (PD), but the normal physiological role of this gene in the brain remains unclear. In a paper published in Neuron, Brigham and Women's Hospital ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.