Weather-forecast tool adapted to evaluate brain health of oxygen-deprived newborns

April 10, 2017, UT Southwestern Medical Center
Large areas of red, as in the heat map on the left, indicate treatment is going well. Credit: UT Southwestern

UT Southwestern Medical Center pediatric researchers have harnessed an analytical tool used to predict the weather to evaluate the effectiveness of therapies to reduce brain injury in newborns who suffer oxygen deprivation during birth.

The , called technology, is best known for predicting long-term weather patterns, such as El Nino. UT Southwestern researchers say this same analytical tool can help improve assessment and treatment of newborns with asphyxia, which is when the baby's brain is deprived of oxygen due to complications during birth. The non-invasive method produces real-time of the infant's brain that doctors can use to determine whether therapies to prevent are effective.

"These are babies to whom something catastrophic happened at birth. What this technology does is measure physiologic parameters of the brain - blood flow and nerve cell activity - to produce a real-time image of what we are calling 'neurovascular coupling.' If there is high coherence between these two variables, you know that things are going well," said Dr. Lina Chalak, Associate Professor of Pediatrics at UT Southwestern and lead author of the study.

The wavelet analysis correlates information from two non-invasive technologies that are currently used on a day-to-day basis in : amplitude EEG and near infrared spectroscopy. The approach combines the results from these commonly done tests in a sophisticated way and creates a new proxy measure of brain health called neurovascular coupling. When neuronal activity and brain perfusion are synchronized - as indicated by large areas of red on heat maps created by this method - treatment is working well.

About 12,000 newborns experience (asphyxia) during birth in the U.S. each year, according to a 2010 article in Lancet. This can occur for a number of reasons, such as the cord being wrapped around the baby's neck, a difficult breech birth, or the separation of the placenta from the uterus too soon, Dr. Chalak explained. These infants are at high risk of developing serious consequences such as cerebral palsy, epilepsy, and cognitive deficits.

No treatments were available until about 10 years ago when a national study in which UT Southwestern participated, showed that reducing the baby's core temperature could counteract the impact of for some infants. The cooling blankets are now standard treatment, but only about half of babies treated with a cooling blanket benefit.

Until the adaptation of the wavelet technology, doctors couldn't determine which infants were benefitting from cooling treatment and which babies may need additional therapies, which are being developed.

Dr. Lina Chalak, Associate Professor of Pediatrics at UT Southwestern Medical Center and a specialist in treating birth asphyxia, uses wavelet analysis of amplitude EEG and near infrared spectroscopy to create a proxy measure of brain health she calls 'neurovascular coupling.' Credit: UT Southwestern

Wavelet analysis information also can help in evaluation of new therapies. Dr. Chalak plans to use wavelet analysis as part of the HEAL study, a large clinical trial to determine the effectiveness of erythropoietin, a hormone that promotes the formation of red blood cells, to treat newborns with asphyxia. Wavelet analysis will be used to evaluate infants who are part of the HEAL study at the Neonatal Intensive Care Unit at William P. Clements Jr. University Hospital, Parkland Hospital, and Children's Medical Center.

Wavelet technology also may help determine which children should be treated.

"Of the babies who are oxygen-deprived, some don't qualify for cooling because their brain damage or encephalopathy is judged to be mild. Yet some of these children have adverse outcomes. This technology may help us identify who needs cooling," said Dr. Rashmin Savani, Chief of Neonatal-Perinatal Medicine and Professor of Pediatrics and of Integrative Biology, who holds The William Buchanan Chair in Pediatrics.

It could also lead to other discoveries.

"Understanding of brain blood flow regulation and its impact on function in newborns with asphyxia using this novel technology has great potential for developing new sensitive biomarkers for clinical diagnosis, treatment, and prognosis for these sick babies, which is desperately needed in the field," said co-author Dr. Rong Zhang, Associate Professor of Neurology and Neurotherapeutics, and of Internal Medicine, and a member of the Peter O'Donnell Jr. Brain Institute at UT Southwestern.

The research appears in Scientific Reports.

Other UT Southwestern researchers who contributed to this paper are Dr. Beverley Adams-Huet, Assistant Professor of Clinical Sciences and of Internal Medicine; Diana Vasil, research nurse; and Dr. Takashi Tarumi, Instructor in Neurology and Neurotherapeutics, along with Dr. Fenghua Tian, Assistant Professor of Biomedical Engineering at UT Arlington. The research was funded by grants from the National Institutes of Neurological Disorders and Stroke (NINDS), part of the National Institutes of Health.

Dr. Chalak said the new tools represent a paradigm shift for physicians who treat oxygen-deprived newborns. "Hopefully, the future will be bright for babies who suffered asphyxia, differing from the bleak prognoses of the past."

Explore further: Enzyme controlling cell death paves way for treatment of brain damage in newborns

More information: Lina F. Chalak et al. Novel Wavelet Real Time Analysis of Neurovascular Coupling in Neonatal Encephalopathy, Scientific Reports (2017). DOI: 10.1038/srep45958

Related Stories

Enzyme controlling cell death paves way for treatment of brain damage in newborns

October 25, 2011
where the brain is starved of oxygen around the time of delivery – is normally treated by cooling the infant, but this only helps one baby in nine. New research from the Sahlgrenska Academy at the University of Gothenburg, ...

Studying brain-cooling for birth asphyxia

March 21, 2013
In high income countries brain cooling is standard treatment for neonatal encephalopathy - unexpected, devastating brain injury due to low oxygen and blood in the baby's brain at birth. This therapy reduces mortality and ...

A new technique to test for brain damage in newborn babies

January 7, 2016
Neurological damage known as Hypoxic-ischemic encephalopathy (HIE) occurs in babies who experience a lack of oxygen or blood supply before birth, and can often lead to death or cerebral palsy in severe cases. HIE affects ...

Jetlag skin patch may prevent brain damage in newborns

May 13, 2014
A simple and affordable 'jetlag' skin patch could help prevent deaths and disabilities of two million babies worldwide each year by reducing brain damage caused by low oxygen during birth.

Most cases of brain-damaged newborns not due to mismanaged deliveries

January 22, 2016
A study by researchers at Loyola University Medical Center and Loyola University Chicago is providing new evidence that the vast majority of babies who are born with severe brain damage are not the result of mismanaged deliveries.

Recommended for you

The effects of happiness and sadness on children's snack consumption

February 19, 2018
A University of Texas at Dallas psychologist has examined the preconceptions about the effects of emotions on children's eating habits, creating the framework for future studies of how dietary patterns evolve in early childhood.

Cycle of infant reflux signals a call to help mothers

February 14, 2018
Western Sydney University research has found that first-time mothers with mental health issues – in particular, maternal anxiety – are five times as likely to have their baby noted as having reflux when admitted to hospital.

Safe-sleep recommendations for infants have not reduced sudden deaths in newborns

February 14, 2018
An analysis of trends in sudden unexpected infant death (SUID) over the past two decades finds that the drop in such deaths that took place following release of the 1992 American Academy of Pediatrics (AAP) "back to sleep" ...

Most children with sickle cell anemia not receiving key medication to stay healthy

February 13, 2018
One of the greatest health threats to children with sickle cell anemia is getting a dangerous bacterial infection—but most are not receiving a key medication to reduce the risk, a new study suggests.

Premature babies' low blood pressure puzzle explained

February 13, 2018
Scientists have discovered crucial new information about how a foetus develops which could explain why very premature babies suffer low blood pressure and other health problems.

Babies face higher SIDS risk in certain states

February 12, 2018
(HealthDay)—Sudden infant death syndrome (SIDS) claims the lives of some 3,500 babies in the United States each year, but its toll is far heavier in some states than others, health officials report.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.