To improve chronic pain, get more sleep (coffee helps too)

May 8, 2017, Children's Hospital Boston
Credit: Alban Latremoliere

New research from Boston Children's Hospital and Beth Israel Deaconess Medical Center (BIDMC) shows that chronic sleep loss increases pain sensitivity. It suggests that chronic pain sufferers can get relief by getting more sleep, or, short of that, taking medications to promote wakefulness such as caffeine. Both approaches performed better than standard analgesics in a rigorous study in mice, described in the May 8, 2017 issue of Nature Medicine.

Pain physiologist Alban Latremoliere, PhD, of Boston Children's and sleep physiologist Chloe Alexandre, PhD, of BIDMC precisely measured the effects of acute or chronic sleep loss on sleepiness and sensitivity to both painful and non-painful stimuli. They then tested standard pain medications, like ibuprofen and morphine, as well as wakefulness-promoting agents like caffeine and modafinil. Their findings reveal an unexpected role for alertness in setting pain sensitivity.

Keeping mice awake, through custom entertainment

The team started by measuring normal sleep cycles, using tiny headsets that took electroencephalography (EEG) and electromyography (EMG) readings. "For each mouse, we have exact baseline data on how much they sleep and what their sensory sensitivity is," says Latremoliere, who works in the lab of Clifford Woolf, PhD, in the F.M. Kirby Neurobiology Center at Boston Children's.

Next, unlike other sleep studies that force to stay awake walking treadmills or falling from platforms, Alexandre, Latremoliere and colleagues deprived mice of sleep in a way that mimics what happens with people: They entertained them.

"We developed a protocol to chronically sleep-deprive mice in a non-stressful manner, by providing them with toys and activities at the time they were supposed to go to sleep, thereby extending the wake period," says Alexandre, who works in the lab of Thomas Scammell, MD, at BIDMC. "This is similar to what most of us do when we stay awake a little bit too much watching late-night TV each weekday."

To keep the mice awake, researchers kept vigil, providing the mice with custom-made toys as interest flagged while being careful not to overstimulate them. "Mice love nesting, so when they started to get sleepy (as seen by their EEG/EMG pattern) we would give them nesting materials like a wipe or cotton ball," says Latremoliere. "Rodents also like chewing, so we introduced a lot of activities based around chewing, for example, having to chew through something to get to a cotton ball."

In this way, they kept groups of six to 12 mice awake for as long as 12 hours in one session, or six hours for five consecutive days, monitoring sleepiness and stress hormones (to make sure they weren't stressed) and testing for pain along the way.

Pain sensitivity was measured in a blinded fashion by exposing mice to controlled amounts of heat, cold, pressure or capsaicin (the agent in hot chili peppers) and then measuring how long it took the animal to move away (or lick away the discomfort caused by capsaicin). The researchers also tested responses to non-painful stimuli, such as jumping when startled by a sudden loud sound.

"We found that five consecutive days of moderate sleep deprivation can significantly exacerbate over time in otherwise healthy mice," says Alexandre. "The response was specific to pain, and was not due to a state of general hyperexcitability to any stimuli."

Analgesics vs. wake-promoting agents

Surprisingly, common analgesics like ibuprofen did not block sleep-loss-induced pain hypersensitivity. Even morphine lost most of its efficacy in sleep-deprived mice. These observations suggest that patients using these drugs for pain relief might have to increase their dose to compensate for lost efficacy due to sleep loss, thereby increasing their risk for side effects.

In contrast, both caffeine and modafinil, drugs used to promote wakefulness, successfully blocked the pain hypersensitivity caused by both acute and chronic sleep loss. Interestingly, in non-sleep-deprived mice, these compounds had no analgesic properties.

"This represents a new kind of analgesic that hadn't been considered before, one that depends on the biological state of the animal," says Woolf, director of the Kirby Center at Boston Children's. "Such drugs could help disrupt the chronic pain cycle, in which pain disrupts sleep, which then promotes pain, which further disrupts sleep."

A new approach to chronic pain?

The researchers conclude that rather than just taking painkillers, patients with chronic pain might benefit from better sleep habits or sleep-promoting medications at night, coupled with daytime alertness-promoting agents to try to break the pain cycle. Some painkillers already include caffeine as an ingredient, although its mechanism of action isn't yet known. Both caffeine and modafinil boost dopamine circuits in the brain, so that may provide a clue.

"This work was supported by a novel NIH program that required a pain scientist to join a non-pain scientist to tackle a completely new area of research," notes Scammel, professor of neurology at BIDMC. "This cross-disciplinary collaboration enabled our labs to discover unsuspected links between sleep and pain with actionable clinical implications for improving pain management."

"Many patients with chronic pain suffer from poor sleep and daytime fatigue, and some pain medications themselves can contribute to these co-morbidities," notes Kiran Maski, MD, a specialist in sleep disorders at Boston Children's. "This study suggests a novel approach to management that would be relatively easy to implement in clinical care. Clinical research is needed to understand what sleep duration is required and to test the efficacy of wake-promoting medications in patients."

Explore further: Study finds no link between sleep apnea and joint pain

More information: Decreased alertness due to sleep loss increases pain sensitivity in mice, Nature Medicine (2017). nature.com/articles/doi:10.1038/nm.4329

Related Stories

Study finds no link between sleep apnea and joint pain

August 1, 2016
Consistent with previous reports, poor sleep quality was linked with joint pain in a recent Arthritis Care & Research study of the general population, but the study found no association between obstructive sleep apnea and ...

Sleep is key to curing chronic pain

September 21, 2016
Research from the University of Warwick reveals that the way chronic pain patients think about pain and sleep leads to insomnia and poor management of pain.

Extended sleep reduces pain sensitivity

December 1, 2012
A new study suggests that extending nightly sleep in mildly sleepy, healthy adults increases daytime alertness and reduces pain sensitivity.

For young adults, sleep problems predict later pain problems

March 31, 2016
For at least some groups of "emerging adults," sleep problems are a predictor of chronic pain and worsening pain severity over time, suggests a study in Pain, the official publication of the International Association for ...

Fatigue not a factor in fibromyalgia pain, study says

April 26, 2012
(HealthDay) -- Poor sleep is not a significant predictor of pain intensity and duration in patients with fibromyalgia, a new study says.

Sleep may stop chronic pain sufferers from becoming zombies

March 27, 2014
Chronic pain sufferers could be kept physically active by improving the quality of their sleep, new research suggests.

Recommended for you

Scientists solve the case of the missing subplate, with wide implications for brain science

June 21, 2018
The disappearance of an entire brain region should be cause for concern. Yet, for decades scientists have calmly maintained that one brain area, the subplate, simply vanishes during the course of human development. Recently, ...

LincRNAs identified in human fat tissue

June 21, 2018
A large team of researchers from the U.S. and China has succeeded in identifying a number of RNA fragments found in human fat tissue. In their paper published in the journal Science Translational Medicine the group describes ...

Key molecule of aging discovered

June 21, 2018
Every cell and every organism ages sooner or later. But why is this so? Scientists at the German Cancer Research Center in Heidelberg have now discovered for the first time a protein that represents a central switching point ...

Compound made inside human body stops viruses from replicating

June 20, 2018
The newest antiviral drugs could take advantage of a compound made not by humans, but inside them. A team of researchers has identified the mode of action of viperin, a naturally occurring enzyme in humans and other mammals ...

Research reveals zero proof probiotics can ease your anxiety

June 20, 2018
If you're expecting probiotics to reduce your anxiety, it might be time to put down that yogurt spoon—or supplement bottle—and call a professional instead.

Long-term estrogen therapy changes microbial activity in the gut, study finds

June 20, 2018
Long-term therapy with estrogen and bazedoxifene alters the microbial composition and activity in the gut, affecting how estrogen is metabolized, a new study in mice found.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.