Scientists find skin cells at the root of balding, gray hair

May 8, 2017 by Carol Marie Cropper, UT Southwestern Medical Center
Strand of human hair at 200x magnification. Credit: Jan Homann/Wikipedia

UT Southwestern Medical Center researchers have identified the cells that directly give rise to hair as well as the mechanism that causes hair to turn gray – findings that could one day help identify possible treatments for balding and hair graying.

"Although this project was started in an effort to understand how certain kinds of tumors form, we ended up learning why hair turns gray and discovering the identity of the cell that directly gives rise to hair," said Dr. Lu Le, Associate Professor of Dermatology with the Harold C. Simmons Comprehensive Cancer Center at UT Southwestern. "With this knowledge, we hope in the future to create a topical compound or to safely deliver the necessary gene to hair follicles to correct these cosmetic problems."

The researchers found that a protein called KROX20, more commonly associated with nerve development, in this case turns on in skin that become the hair shaft. These hair precursor, or progenitor, cells then produce a protein called stem cell factor (SCF) that the researchers showed is essential for hair pigmentation.

When they deleted the SCF gene in the hair progenitor cells in mouse models, the animal's hair turned white. When they deleted the KROX20-producing cells, no hair grew and the mice became bald, according to the study.

The findings are published online in Genes & Development.

Dr. Le, who holds the Thomas L. Shields, M.D. Professorship in Dermatology, said he and his researchers serendipitously uncovered this explanation for balding and hair graying while studying a disorder called Neurofibromatosis Type 1, a rare genetic disease that causes tumors to grow on nerves.

Scientists already knew that stem cells contained in a bulge area of hair follicles are involved in making hair and that SCF is important for pigmented cells, said Dr. Le, a member of the Hamon Center for Regenerative Science and Medicine.

What they did not know in detail is what happens after those stem cells move down to the base, or bulb, of hair follicles and which cells in the hair follicles produce SCF – or that cells involved in hair shaft creation make the KROX20 protein, he said.

If cells with functioning KROX20 and SCF are present, they move up from the bulb, interact with pigment-producing melanocyte cells, and grow into pigmented hairs.

But without SCF, the hair in mouse models was gray, and then turned white with age, according to the study. Without KROX20-producing cells, no hair grew, the study said.

UT Southwestern researchers will now try to find out if the KROX20 in cells and the SCF gene stop working properly as people age, leading to the graying and hair thinning seen in older people – as well as in male pattern baldness, Dr. Le said.

The research also could provide answers about why we age in general as hair graying and loss are among the first signs of aging.

Explore further: New research provides clues on why hair turns gray

More information: Chung-Ping Liao et al. Identification of hair shaft progenitors that create a niche for hair pigmentation, Genes & Development (2017). DOI: 10.1101/gad.298703.117

Related Stories

New research provides clues on why hair turns gray

June 14, 2011
A new study by researchers at NYU Langone Medical Center has shown that, for the first time, Wnt signaling, already known to control many biological processes, between hair follicles and melanocyte stem cells can dictate ...

New research clarifies how stem cells get activated to produce new hair

March 3, 2016
Adult stem cells provide the body with a reservoir from which damaged or used up tissues can be replenished. In organs like the intestines and skin, which need constant rejuvenating, these stem cells are dividing frequently. ...

Recommended for you

Early life experiences influence DNA in the adult brain

March 22, 2018
In the perennial question of nature versus nurture, a new study suggests an intriguing connection between the two. Salk Institute scientists report in the journal Science that the type of mothering a female mouse provides ...

Study reveals startlingly different tissue sensitivities to cancer-driving genes

March 22, 2018
New research led by Harvard Medical School and Brigham and Women's Hospital has unmasked hundreds of cancer-driving genes and revealed that different tissue types have shockingly variable sensitivities to those genes.

Does genome sequencing increase downstream costs?

March 22, 2018
As genome sequencing enters the clinic, fears have arisen about its potential to motivate follow-up testing and ongoing screening that could drastically increase health care spending. But few studies have quantified the downstream ...

First 'non-gene' mutations behind neurodevelopmental disorders discovered

March 21, 2018
In the largest study of its kind, genetic changes causing neurodevelopmental disorders have been discovered by scientists at the Wellcome Sanger Institute and their collaborators in the NHS Regional Genetics services. The ...

Two genes likely play key role in extreme nausea and vomiting during pregnancy

March 21, 2018
Most women experience some morning sickness during pregnancy, but about 2 percent of pregnant women experience a more severe form of nausea and vomiting.

Scientists identify genes that could inform novel therapies for EBV-related cancers

March 20, 2018
VCU Massey Cancer Center researchers have identified two genes that are responsible for governing the replication of the Epstein-Barr virus, an infection that drives the growth of several types of cancer. The discovery could ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.