New hope for slow-healing wounds

May 19, 2017

MicroRNAs are interesting target structures for new therapeutic agents. They can be blocked through synthetic antimiRs. However, to date it was not possible to use these only locally. Researchers at Goethe University Frankfurt have now successfully achieved this in the treatment of impaired wound healing with the help of light-inducible antimiRs.

MicroRNAs are small gene fragments which bond onto target structures in cells and in this way prevent certain proteins from forming. As they play a key role in the occurrence and manifestation of various diseases, researchers have developed what are known as antimiRs, which block microRNA function. The disadvantage of this approach is, however, that the blockade can lead to side effects throughout the entire body since microRNAs can perform different functions in various organs. Researchers at Goethe University Frankfurt have now solved this problem.

The research groups led by Professor Alex Heckel and Professor Stefanie Dimmeler of the Cluster of Excellence Frankfurt Macromolecular Complexes have developed antimiRs that can be activated very effectively over a limited local area by using light of a specific wavelength. To this purpose, the antimiRs were locked in a cage of light-sensitive molecules that disintegrate as soon as they are irradiated with light of a specific wavelength.

As a means of testing the therapeutic effect of these new antimiRs, the researchers chose microRNA-92a as the target structure. This is frequently found in diabetes patients with slow-healing . They injected the antimiRs in the light-sensitive cage into the skin of mice and then released the therapeutic agent into the tissue with the help of light. Together the research groups were able to prove that pinpointed activation of an antimiR against microRNA-92a helps wounds to heal.

"Apart from these findings, which prove for the first time that can be improved by using antimiRs to block microRNA-92a, our data also confirms that microRNA-92a function is indeed only locally inhibited. Other organs, such as the liver, were not affected," says Professor Stefanie Dimmeler, underlining the trials' clinical significance.

The researchers now want to see whether they can also expand the use of light-inducible antimiRs to the treatment of other diseases. In particular they want to examine whether toxic antimiRs can attack tumors locally as well.

Explore further: Witnessing the birth of a tiny RNA at brain synapses

More information: Tina Lucas et al. Light-inducible antimiR-92a as a therapeutic strategy to promote skin repair in healing-impaired diabetic mice, Nature Communications (2017). DOI: 10.1038/ncomms15162

Related Stories

Witnessing the birth of a tiny RNA at brain synapses

February 13, 2017
Proteins are the building blocks of all cells. They are made from messenger RNA (mRNA) molecules, which are copied from DNA in the nuclei of cells. All cells, including brain cells regulate the amount and kind of proteins ...

A form of RNA released from fat cells into the blood may help to regulate other tissues

February 15, 2017
Fat cells are not simply big blobs of lipid quietly standingby in the body—instead, they send out hormones and other signaling proteins that affect many types of tissues. Scientists at Joslin Diabetes Center now have identified ...

New hope for patients with chronic wounds

June 29, 2015
Most wounds clear up by themselves, but some fail to heal and become chronic. An international team of researchers led from Karolinska Institutet, now unveil the important role of so-called microRNAs in regulating skin wound ...

New aptamer-based approach delivers microRNA therapeutic that targets cancer / cardiovascular disease

June 3, 2015
Researchers have shown that a novel delivery strategy can efficiently introduce a functional microRNA that has anti-cancer and angiogenic activities into two different types of cells—breast cancer cells to inhibit tumor ...

Choreographing the microRNA-target dance

January 23, 2017
Scientists face a conundrum in their quest to understand how microRNAs regulate genes and therefore how they influence human disease at the molecular level: How do these tiny RNA molecules find their partners, called messenger ...

Study: Enhancing cancer response to radiation

December 2, 2016
OHSU researcher Sudarshan Anand, Ph.D., has a contemporary analogy to describe microRNA: "I sometimes compare MicroRNA to tweets—they're short, transient and constantly changing."

Recommended for you

Link between cells associated with aging and bone loss

August 21, 2017
Mayo Clinic researchers have reported a causal link between senescent cells - the cells associated with aging and age-related disease - and bone loss in mice. Targeting these cells led to an increase in bone mass and strength. ...

Gut microbes may talk to the brain through cortisol

August 21, 2017
Gut microbes have been in the news a lot lately. Recent studies show they can influence human health, behavior, and certain neurological disorders, such as autism. But just how do they communicate with the brain? Results ...

Are stem cells the link between bacteria and cancer?

August 17, 2017
Gastric carcinoma is one of the most common causes of cancer-related deaths, primarily because most patients present at an advanced stage of the disease. The main cause of this cancer is the bacterium Helicobacter pylori, ...

Two-step process leads to cell immortalization and cancer

August 17, 2017
A mutation that helps make cells immortal is critical to the development of a tumor, but new research at the University of California, Berkeley suggests that becoming immortal is a more complicated process than originally ...

New Pathology Atlas maps genes in cancer to accelerate progress in personalized medicine

August 17, 2017
A new Pathology Atlas is launched today with an analysis of all human genes in all major cancers showing the consequence of their corresponding protein levels for overall patient survival. The difference in expression patterns ...

Female mouse embryos actively remove male reproductive systems

August 17, 2017
A protein called COUP-TFII determines whether a mouse embryo develops a male reproductive tract, according to researchers at the National Institutes of Health and their colleagues at Baylor College of Medicine, Houston. The ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.