Team identifies the novel molecular signal for triggering septic shock

May 4, 2017, The Korea Advanced Institute of Science and Technology (KAIST)
The deletion of IPMK (inositol polyphosphate multikinase) in macrophages reduces the stability of TRAF6 protein which is the key to innate immune signaling, thereby blocking excessive inflammation in response to pathological bacterial infection. Credit: KAIST

Professor Seyun Kim's team from KAIST reported the mechanism by which cellular signaling transduction network is exquisitely controlled in mediating innate immune response such as sepsis by the enzyme IPMK (Inositol polyphosphate multikinase) essential for inositol biosynthesis metabolism.

In collaboration with Professor Rho Hyun Seong at Seoul National University, the study's first author, Eunha Kim, a Ph.D. candidate in Department of Biological Sciences, performed a series of cellular, biochemical, and physiological experiments searching for the new function of IPMK enzyme in macrophages. The research findings were published in Science Advances on April 21.

Professor Kim's team has been investigating various metabolites and their biosynthesis metabolism for several years and has multilaterally identified signaling actions of IPMK (Inositol polyphosphate multikinase) in the control of cellular growth and energy homeostasis.

This research showed that specific deletion of IPMK enzyme in macrophages could significantly reduce levels of inflammation and increase survival rates in mice when they were challenged by microbial septic shock as well as endotoxins. This suggests a role for IPMK enzyme in mediating innate inflammatory responses that are directly related to host defense against pathogenic bacterial infection.

The team further discovered that IPMK enzyme directly binds to TRAF6 protein, a key player in immune signaling, thus protecting TRAF6 protein from ubiquitination reactions that are involved in protein degradation. In addition, Kim and colleagues successfully verified this IPMK-dependent immune control by employing short peptides which can specifically interfere with the binding between IPMK enzyme and TRAF6 in macrophage cells.

This research revealed a novel function of IPMK in the fine tuning of innate immune signaling networks, suggesting a new direction for developing therapeutics targeting serious medical conditions such as neuroinflammation, type 2 diabetes, as well as polymicrobial sepsis that are developed from uncontrolled host immune responses. This research was funded by the Ministry of Science, ICT and Future Planning.

Explore further: Epigenetic enzyme found to be lacking in some patients with Crohn's disease

More information: Eunha Kim et al, Inositol polyphosphate multikinase promotes Toll-like receptor–induced inflammation by stabilizing TRAF6, Science Advances (2017). DOI: 10.1126/sciadv.1602296

Related Stories

Epigenetic enzyme found to be lacking in some patients with Crohn's disease

March 3, 2017
A Massachusetts General Hospital (MGH) research team has found how a variant in an important epigenetic enzyme—previously associated by population-based genetic studies with Crohn's disease and other immune disorders—interferes ...

Research team identifies a neuron signal controlling molecule

July 22, 2016
A research team led by Professor Seyun Kim of the Department of Biological Sciences at Korea Advanced Institute of Science and Technology (KAIST) has identified inositol pyrophosphates as the molecule that strongly controls ...

Anthrax spores use RNA coat to mislead immune system

April 11, 2017
Researchers from Harvard Medical School have discovered that the body's immune system initially detects the presence of anthrax spores by recognizing RNA molecules that coat the spores' surface. But this prompts an unfavorable ...

Scientists uncover the way a common cell enzyme alerts the body to invading bacteria

August 24, 2016
Biomedical investigators at Cedars-Sinai have identified an enzyme found in all human cells that alerts the body to invading bacteria and jump-starts the immune system.

Scientists identify early impact of Ebola virus on immune system

January 17, 2017
A new mouse model of early Ebola virus (EBOV) infection has shown National Institutes of Health (NIH) scientists and colleagues how early responses of the immune system can affect development of EBOV disease. The model could ...

Recommended for you

Novel genomic tools provide new insight into human immune system

January 19, 2018
When the body is under attack from pathogens, the immune system marshals a diverse collection of immune cells to work together in a tightly orchestrated process and defend the host against the intruders. For many decades, ...

Genomics reveals key macrophages' involvement in systemic sclerosis

January 18, 2018
A new international study has made an important discovery about the key role of macrophages, a type of immune cell, in systemic sclerosis (SSc), a chronic autoimmune disease which currently has no cure.

First vaccine developed against grass pollen allergy

January 18, 2018
Around 400 million people worldwide suffer in some form or other from a grass pollen allergy (rhinitis), with the usual symptoms of runny nose, cough and severe breathing problems. In collaboration with the Viennese firm ...

Researchers discover key driver of atopic dermatitis

January 17, 2018
Severe eczema, also known as atopic dermatitis, is a chronic inflammatory skin condition that is driven by an allergic reaction. In their latest study, researchers at La Jolla Institute reveal an important player that promotes ...

Who might benefit from immunotherapy? New study suggests possible marker

January 16, 2018
While immunotherapy has made a big impact on cancer treatment, the fact remains that only about a quarter of patients respond to these treatments.

Researchers identify new way to unmask melanoma cells to the immune system

January 16, 2018
system, which enables these deadly skin cancers to grow and spread.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.