Building a better blood-brain barrier model

June 6, 2017, Brigham and Women's Hospital
Blood-brain-barrier spheroids present high level of efflux pump (left: green) and tight junctions (center and right: green) on the surface of each spheroid to keep foreign molecules out. Credit: Choi-Fong Cho, Brigham and Women's Hospital

Delivering drugs to the brain is no easy task. The blood-brain barrier -a protective sheath of tissue that shields the brain from harmful chemicals and invaders - cannot be penetrated by most therapeutics that are injected into a person's blood stream. But for treating diseases of the central nervous system and cancers such as glioblastoma, it's essential to get drugs across this barrier and deliver them to where they are needed most. Current research models that are used to study or imitate the blood-brain barrier have a number of limitations. Investigators at Brigham and Women's Hospital have developed an innovative but easily implemented approach that uses "spheroids" to mimic the blood-brain barrier more accurately, and appears to overcome several challenges for discovering and advancing new drugs for treating brain conditions. They report their results June 6 in Nature Communications.

"Our takes a new approach to mimic the blood-brain outside of a living system. These miniature spheroids are relatively straightforward to culture, and yet it is able to reproduce many of the key blood-brain barrier properties and functions," said lead author Choi-Fong Cho, PhD, of the Department of Neurosurgery. "Our hope is that these findings will further advance neuroscience research and expedite the discovery and design of brain-penetrant drugs to treat diseases of the brain and central nervous system."

Current models of the blood-brain barrier rely largely on either animal models - which are expensive, laborious and can only be used to test a limited number of compounds at a time - or cells grown in the lab. For the latter, it's very difficult to replicate the conditions found in the human body. Cells are often grown on flat plastic surfaces, isolated by cell type, and may become less and less like the unique cells found in the brain over time. The new technique grows different kinds of - , pericytes and astrocytes - together, allowing them to spontaneously form multicellular spheroids. These self-assembled structures closely resemble the blood-brain barrier organization and can be used to predict drug penetration capabilities - molecules that can penetrate the surface of the spheres and accumulate inside are more likely to be able to penetrate the blood-brain barrier and enter the brain in a living organism.

An image of a brain tissue section showing accumulation of a blood-brain-barrier-penetrating peptide (in white) in the brain tissue (outside of blood vessels). A green dye is used to highlight the blood vessels within the animal, and cell nuclei are represented in blue. Credit: Choi-Fong Cho, Brigham and Women's Hospital

The research team performed several tests on these spheroids to establish some of the key properties of the blood-brain barrier that allow it to restrict the influx of foreign molecules. The spheroid model scored much better on many of these properties than the standard model in use today. The team also used the spheroids to identify new brain-penetrant molecules, which could hold high potential for delivering therapeutics across the blood-brain barrier.

"We plan to use this model going forward in our own research to identify new therapeutics for glioblastoma," said senior author Sean Lawler, PhD, of the Department of Neurosurgery. "This is a very versatile model and should allow our group and others to test not only molecules but also viruses, cells and more that may be able to cross the ."

Explore further: What is the blood-brain barrier and how can we overcome it?

More information: Cho CF et al. "Blood-brain-barrier spheroids as an in vitro screening platform for brain-penetrating agents" Nature Communications DOI: 10.1038/ncomms15623

Related Stories

What is the blood-brain barrier and how can we overcome it?

April 6, 2017
The brain is precious, and evolution has gone to great lengths to protect it from damage. The most obvious is our 7mm thick skull, but the brain is also surrounded by protective fluid (cerebrospinal – of the brain and spine) ...

Study reveals the surprising role of omega-3 fatty acids in keeping the blood-brain barrier closed

May 4, 2017
Already extolled for their health benefits as a food compound, omega-3 fatty acids now appear to also play a critical role in preserving the integrity of the blood-brain barrier, which protects the central nervous system ...

Team moves small-molecule drugs through blood-brain barrier

June 4, 2014
Researchers at Mayo Clinic have demonstrated in a mouse model that their recently developed synthetic peptide carrier is a potential delivery vehicle for brain cancer chemotherapy drugs and other neurological medications. ...

New knowledge about the brain's effective bouncer

July 16, 2014
Research from the University of Copenhagen is shedding new light on the brain's complicated barrier tissue. The blood-brain barrier is an effective barrier which protects the brain, but which at the same time makes it difficult ...

Researchers develop techniques to bypass blood-brain barrier, deliver drugs to brain and nervous system

October 20, 2015
Researchers at Massachusetts Eye and Ear/Harvard Medical School and Boston University have successfully prevented the development of Parkinson's disease in a mouse using new techniques to deliver drugs across the naturally ...

Recommended for you

New blood test to detect liver damage in under an hour

May 24, 2018
A quick and robust blood test that can detect liver damage before symptoms appear has been designed and verified using clinical samples by a team from UCL and University of Massachusetts.

Gut bacteria play key role in anti-seizure effects of ketogenic diet

May 24, 2018
UCLA scientists have identified specific gut bacteria that play an essential role in the anti-seizure effects of the high-fat, low-carbohydrate ketogenic diet. The study, published today in the journal Cell, is the first ...

Selective neural connections can be reestablished in retina after injury, study finds

May 24, 2018
The brain's ability to form new neural connections, called neuroplasticity, is crucial to recovery from some types of brain injury, but this process is hard to study and remains poorly understood. A new study of neural circuit ...

Space-like gravity weakens biochemical signals in muscle formation

May 23, 2018
Astronauts go through many physiological changes during their time in spaceflight, including lower muscle mass and slower muscle development. Similar symptoms can occur in the muscles of people on Earth's surface, too. In ...

Eating at night, sleeping by day swiftly alters key blood proteins

May 21, 2018
Staying awake all night and sleeping all day for just a few days can disrupt levels and time of day patterns of more than 100 proteins in the blood, including those that influence blood sugar, energy metabolism, and immune ...

Hotter bodies fight infections and tumours better—researchers show how

May 21, 2018
The hotter our body temperature, the more our bodies speed up a key defence system that fights against tumours, wounds or infections, new research by a multidisciplinary team of mathematicians and biologists from the Universities ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.