Building a better blood-brain barrier model

June 6, 2017, Brigham and Women's Hospital
Blood-brain-barrier spheroids present high level of efflux pump (left: green) and tight junctions (center and right: green) on the surface of each spheroid to keep foreign molecules out. Credit: Choi-Fong Cho, Brigham and Women's Hospital

Delivering drugs to the brain is no easy task. The blood-brain barrier -a protective sheath of tissue that shields the brain from harmful chemicals and invaders - cannot be penetrated by most therapeutics that are injected into a person's blood stream. But for treating diseases of the central nervous system and cancers such as glioblastoma, it's essential to get drugs across this barrier and deliver them to where they are needed most. Current research models that are used to study or imitate the blood-brain barrier have a number of limitations. Investigators at Brigham and Women's Hospital have developed an innovative but easily implemented approach that uses "spheroids" to mimic the blood-brain barrier more accurately, and appears to overcome several challenges for discovering and advancing new drugs for treating brain conditions. They report their results June 6 in Nature Communications.

"Our takes a new approach to mimic the blood-brain outside of a living system. These miniature spheroids are relatively straightforward to culture, and yet it is able to reproduce many of the key blood-brain barrier properties and functions," said lead author Choi-Fong Cho, PhD, of the Department of Neurosurgery. "Our hope is that these findings will further advance neuroscience research and expedite the discovery and design of brain-penetrant drugs to treat diseases of the brain and central nervous system."

Current models of the blood-brain barrier rely largely on either animal models - which are expensive, laborious and can only be used to test a limited number of compounds at a time - or cells grown in the lab. For the latter, it's very difficult to replicate the conditions found in the human body. Cells are often grown on flat plastic surfaces, isolated by cell type, and may become less and less like the unique cells found in the brain over time. The new technique grows different kinds of - , pericytes and astrocytes - together, allowing them to spontaneously form multicellular spheroids. These self-assembled structures closely resemble the blood-brain barrier organization and can be used to predict drug penetration capabilities - molecules that can penetrate the surface of the spheres and accumulate inside are more likely to be able to penetrate the blood-brain barrier and enter the brain in a living organism.

An image of a brain tissue section showing accumulation of a blood-brain-barrier-penetrating peptide (in white) in the brain tissue (outside of blood vessels). A green dye is used to highlight the blood vessels within the animal, and cell nuclei are represented in blue. Credit: Choi-Fong Cho, Brigham and Women's Hospital

The research team performed several tests on these spheroids to establish some of the key properties of the blood-brain barrier that allow it to restrict the influx of foreign molecules. The spheroid model scored much better on many of these properties than the standard model in use today. The team also used the spheroids to identify new brain-penetrant molecules, which could hold high potential for delivering therapeutics across the blood-brain barrier.

"We plan to use this model going forward in our own research to identify new therapeutics for glioblastoma," said senior author Sean Lawler, PhD, of the Department of Neurosurgery. "This is a very versatile model and should allow our group and others to test not only molecules but also viruses, cells and more that may be able to cross the ."

Explore further: What is the blood-brain barrier and how can we overcome it?

More information: Cho CF et al. "Blood-brain-barrier spheroids as an in vitro screening platform for brain-penetrating agents" Nature Communications DOI: 10.1038/ncomms15623

Related Stories

What is the blood-brain barrier and how can we overcome it?

April 6, 2017
The brain is precious, and evolution has gone to great lengths to protect it from damage. The most obvious is our 7mm thick skull, but the brain is also surrounded by protective fluid (cerebrospinal – of the brain and spine) ...

Study reveals the surprising role of omega-3 fatty acids in keeping the blood-brain barrier closed

May 4, 2017
Already extolled for their health benefits as a food compound, omega-3 fatty acids now appear to also play a critical role in preserving the integrity of the blood-brain barrier, which protects the central nervous system ...

Team moves small-molecule drugs through blood-brain barrier

June 4, 2014
Researchers at Mayo Clinic have demonstrated in a mouse model that their recently developed synthetic peptide carrier is a potential delivery vehicle for brain cancer chemotherapy drugs and other neurological medications. ...

New knowledge about the brain's effective bouncer

July 16, 2014
Research from the University of Copenhagen is shedding new light on the brain's complicated barrier tissue. The blood-brain barrier is an effective barrier which protects the brain, but which at the same time makes it difficult ...

Researchers develop techniques to bypass blood-brain barrier, deliver drugs to brain and nervous system

October 20, 2015
Researchers at Massachusetts Eye and Ear/Harvard Medical School and Boston University have successfully prevented the development of Parkinson's disease in a mouse using new techniques to deliver drugs across the naturally ...

Recommended for you

DNA gets away: Scientists catch the rogue molecule that can trigger autoimmunity

February 22, 2018
A research team has discovered the process - and filmed the actual moment - that can change the body's response to a dying cell. Importantly, what they call the 'Great Escape' moment may one day prove to be the crucial trigger ...

Low-calorie diet enhances intestinal regeneration after injury

February 22, 2018
Dramatic calorie restriction, diets reduced by 40 percent of a normal calorie total, have long been known to extend health span, the duration of disease-free aging, in animal studies, and even to extend life span in most ...

Fertility breakthrough: New research could extend egg health with age

February 22, 2018
Women have been told for years that if they don't have children before their mid-30s, they may not be able to. But a new study from Princeton University's Coleen Murphy has identified a drug that extends egg viability in ...

Artificial intelligence quickly and accurately diagnoses eye diseases and pneumonia

February 22, 2018
Using artificial intelligence and machine learning techniques, researchers at Shiley Eye Institute at UC San Diego Health and University of California San Diego School of Medicine, with colleagues in China, Germany and Texas, ...

Gut microbes protect against sepsis—mouse study

February 22, 2018
Sepsis occurs when the body's response to the spread of bacteria or toxins to the bloodstream damages tissues and organs. The fight against sepsis could get a helping hand from a surprising source: gut bacteria. Researchers ...

Breakthrough could lead to better drugs to tackle diabetes and obesity

February 22, 2018
Breakthrough research at Monash University has shown how different areas of major diabetes and obesity drug targets can be 'activated', guiding future drug development and better treatment of diseases.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.