Controlling a single brain chemical may help expand window for learning language and music

June 29, 2017
(from left) Noah Roy, Ph.D., a postdoctoral research associate in Dr. Zakharenko's lab, and first author Jay Blundon, Ph.D., an associate scientist in Dr. Zakharenko's lab. Credit: Seth Dixon / St. Jude Children's Research Hospital

Learning language or music is usually a breeze for children, but as even young adults know, that capacity declines dramatically with age. St. Jude Children's Research Hospital scientists have evidence from mice that restricting a key chemical messenger in the brain helps extend efficient auditory learning much later in life.

Researchers showed that limiting the supply or the function of the neuromodulator in a brain structure called the auditory thalamus preserved the ability of to learn from passive exposure to sound much as young children learn from the soundscape of their world. The study appears June 30 in the journal Science.

"By disrupting adenosine signaling in the auditory thalamus, we have extended the window for auditory learning for the longest period yet reported, well into adulthood and far beyond the usual critical period in mice," said corresponding author Stanislav Zakharenko, M.D., Ph.D., a member of the St. Jude Department of Developmental Neurobiology. "These results offer a promising strategy to extend the same window in humans to acquire language or musical ability by restoring plasticity in critical regions of the brain, possibly by developing drugs that selectively block adenosine activity."

The auditory thalamus is the brain's relay station where sound is collected and sent to the for processing. The auditory thalamus and cortex rely on the neurotransmitter glutamate to communicate. Adenosine was known to reduce glutamate levels by inhibiting this neurotransmitter's release. This study also linked adenosine inhibition to reduced brain plasticity and the end of efficient auditory learning.

The capacity for many forms of learning is greatest in juveniles but declines in adults. St. Jude Children's Research Hospital researchers have extended the time window for auditory learning well into adulthood by restricting the chemical adenosine in a region of the brain called the auditory thalamus. This video captures the activity of neurons in the auditory cortex of awake mice listening to tones being played. Each flash of light signals a neuron firing. Scientists used a special two-photon microscope to image the activity of these neurons, which are almost 0.5 millimeter deep within the brain. Credit: Jay Blundon, PhD

Researchers used a variety of methods to demonstrate that reducing adenosine or blocking the A1 adenosine receptor that is essential to the chemical messenger's function changed how adult mice responded to sound.

Much as young children pick up language simply by hearing it spoken, researchers showed that when adenosine was reduced or the A1 receptor blocked in the auditory thalamus, adult mice passively exposed to a tone responded to the same tone stronger when it was played weeks or months later. These adult mice also gained an ability to distinguish between very close tones (or tones with similar frequencies). Mice usually lack this "perfect pitch" ability.

Researchers also showed that the experimental mice retained the improved tone discrimination for weeks.

Corresponding author Stas Zakharenko, M.D., Ph.D., is a member of the Department of Developmental Neurobiology. Credit: Seth Dixon / St. Jude Children's Research Hospital

"Taken together, the results demonstrated that the window for effective auditory learning re-opened in the mice and that they retained the information," Zakharenko said.

Among the strategies researchers used to inhibit adenosine activity was the experimental compound FR194921, which selectively blocks the A1 receptor. If paired with sound exposure, the compound rejuvenated auditory learning in adult mice. "That suggests it might be possible to extend the window in humans by targeting the A1 receptor for drug development," Zakharenko said.

Zakharenko and his colleagues also linked the age-related decline in ease of auditory learning to an age-related increase in an enzyme (ecto-5'-nucleotidase) involved in adenosine production in the auditory thalamus. Researchers reported that mature mice had higher levels than newborn mice of the enzyme and adenosine in the auditory thalamus. Deletion of this enzyme returned the adenosine level in adult mice to the level of newborn . Therefore, researchers are currently looking for compounds that target ecto-5'-nucleotidase as an alternative approach for extending the window of auditory learning.

Explore further: Mouse study suggests how hearing a warning sound turns into fearing it over time

More information: J.A. Blundon el al., "Restoring auditory cortex plasticity in adult mice by restricting thalamic adenosine signaling," Science (2017). science.sciencemag.org/cgi/doi … 1126/science.aaf4612

Related Stories

Mouse study suggests how hearing a warning sound turns into fearing it over time

June 22, 2017
The music from the movie "Jaws" is a sound that many people have learned to associate with a fear of sharks. Just hearing the music can cause the sensation of this fear to surface, but neuroscientists do not have a full understanding ...

Small RNA identified that offers clues for quieting the 'voices' of schizophrenia

November 28, 2016
St. Jude Children's Research Hospital scientists have identified a small RNA (microRNA) that may be essential to restoring normal function in a brain circuit associated with the "voices" and other hallucinations of schizophrenia. ...

Nicotine exposure during and after pregnancy can cause hearing problems in children

February 13, 2017
Nicotine exposure, before and after birth, can cause a child to have hearing problems due to abnormal development in the auditory brainstem. This is according to a mouse model study published in The Journal of Physiology.

Brain circuit problem likely sets stage for the 'voices' that are symptom of schizophrenia

June 5, 2014
St. Jude Children's Research Hospital scientists have identified problems in a connection between brain structures that may predispose individuals to hearing the "voices" that are a common symptom of schizophrenia. The work ...

Brain circuit problem likely sets stage for the "voices" that are symptom of schizophrenia

June 26, 2014
(Medical Xpress)—St. Jude Children's Research Hospital scientists have identified problems in a connection between brain structures that may predispose individuals to hearing the "voices" that are a common symptom of schizophrenia. ...

These blind mice hear like Stevie Wonder

February 11, 2014
Want to hear as well as Stevie Wonder or the late Ray Charles? A blindfold not only might help, it could rewire your brain in the process, a new study suggests.

Recommended for you

Small but distinct differences among species mark evolution of human brain

November 23, 2017
The most dramatic divergence between humans and other primates can be found in the brain, the primary organ that gives our species its identity.

Team constructs whole-brain map of electrical connections key to forming memories

November 22, 2017
A team of neuroscientists at the University of Pennsylvania has constructed the first whole-brain map of electrical connectivity in the brain based on data from nearly 300 neurosurgical patients with electrodes implanted ...

To forget or to remember? Memory depends on subtle brain signals, scientists find

November 22, 2017
The fragrance of hot pumpkin pie can bring back pleasant memories of holidays past, while the scent of an antiseptic hospital room may cause a shudder. The power of odors to activate memories both pleasing and aversive exists ...

Pitch imperfect? How the brain decodes pitch may improve cochlear implants

November 22, 2017
Picture yourself with a friend in a crowded restaurant. The din of other diners, the clattering of dishes, the muffled notes of background music, the voice of your friend, not to mention your own – all compete for your ...

New research suggests high-intensity exercise boosts memory

November 22, 2017
The health advantages of high-intensity exercise are widely known but new research from McMaster University points to another major benefit: better memory.

Schizophrenia originates early in pregnancy, 'mini-brain' research suggests

November 20, 2017
Symptoms of schizophrenia usually appear in adolescence or young adulthood, but new research reveals that the brain disease likely begins very early in development, toward the end of the first trimester of pregnancy. The ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.