Brain circuit problem likely sets stage for the "voices" that are symptom of schizophrenia

June 26, 2014 by Summer Freeman
Functional magnetic resonance imaging (fMRI) and other brain imaging technologies allow for the study of differences in brain activity in people diagnosed with schizophrenia. The image shows two levels of the brain, with areas that were more active in healthy controls than in schizophrenia patients shown in orange, during an fMRI study of working memory. Credit: Kim J, Matthews NL, Park S./PLoS One.

(Medical Xpress)—St. Jude Children's Research Hospital scientists have identified problems in a connection between brain structures that may predispose individuals to hearing the "voices" that are a common symptom of schizophrenia. The work appears in the June 6 issue of the journal Science.

Researchers linked the problem to a gene deletion. This leads to changes in brain chemistry that reduce the flow of information between two brain structures involved in processing auditory information.

The research marks the first time that a specific circuit in the brain has been linked to the auditory hallucinations, delusions and other psychotic symptoms of . The disease is a chronic, devastating brain disorder that affects about 1 percent of Americans and causes them to struggle with a variety of problems, including thinking, learning and memory.

The disrupted circuit identified in this study solves the mystery of how current antipsychotic drugs ease symptoms and provides a new focus for efforts to develop medications that quiet "voices" but cause fewer side effects.

"We think that reducing the flow of information between these two brain structures that play a central role in processing sets the stage for stress or other factors to come along and trigger the 'voices' that are the most common psychotic symptom of schizophrenia," said the study's corresponding author Stanislav Zakharenko, M.D., Ph.D., an associate member of the St. Jude Department of Developmental Neurobiology. "These findings also integrate several competing models regarding changes in the brain that lead to this complex disorder."

The work was done in a mouse model of the human genetic disorder 22q11 deletion syndrome. The syndrome occurs when part of chromosome 22 is deleted and individuals are left with one rather than the usual two copies of about 25 genes. About 30 percent of individuals with the deletion syndrome develop schizophrenia, making it one of the strongest risk factors for the disorder. DNA is the blueprint for life. Human DNA is organized into 23 pairs of chromosomes that are found in nearly every cell.

Earlier work from Zakharenko's laboratory linked one of the lost genes, Dgcr8, to brain changes in with the that affect a structure important for learning and memory. They found evidence that the same mechanism was at work in patients with schizophrenia. Dgcr8 carries instructions for making small molecules called microRNAs that help regulate production of different proteins.

For this study, researchers used state-of-the-art tools to link the loss of Dgcr8 to changes that affect a different , the auditory thalamus. For decades antipsychotic drugs have been known to work by binding to a protein named the D2 dopamine receptor (Drd2). The binding blocks activity of the chemical messenger dopamine. Until now, however, how that quieted the "voices" of schizophrenia was unclear.

Working in mice with and without the 22q11 deletion, researchers showed that the strength of the nerve impulse from neurons in the auditory thalamus was reduced in mice with the deletion compared to normal mice. Electrical activity in other was not different.

Investigators showed that Drd2 levels were elevated in the auditory thalamus of mice with the deletion, but not in other brain regions. When researchers checked Drd2 levels in tissue from the same structure collected from 26 individuals with and without schizophrenia, scientists reported that protein levels were higher in patients with the disease.

As further evidence of Drd2's role in disrupting signals from the auditory thalamus, researchers tested neurons in the laboratory from different brain regions of mutant and normal mice by adding haloperidol and clozapine. Those drugs work by targeting Drd2. Originally nerve impulses in the mutant neurons were reduced compared to normal mice. But the nerve impulses were almost universally enhanced by antipsychotics in neurons from mutant mice, but only in neurons from the auditory thalamus.

When researchers looked more closely at the missing 22q11 genes, they found that mice that lacked the Dgcr8 responded to a loud noise in a similar manner as schizophrenia patients. Treatment with haloperidol restored the normal startle response in the mice, just as the drug does in patients.

Studying schizophrenia and other brain disorders advances understanding of normal brain development and the missteps that lead to various catastrophic diseases, including pediatric tumors and other problems.

Explore further: Brain circuit problem likely sets stage for the 'voices' that are symptom of schizophrenia

More information: "Specific disruption of thalamic inputs to the auditory cortex in schizophrenia models." Sungkun Chun, et al. Science 6 June 2014: vol. 344 no. 6188 pp. 1178-1182. DOI: 10.1126/science.1253895

Related Stories

Brain circuit problem likely sets stage for the 'voices' that are symptom of schizophrenia

June 5, 2014
St. Jude Children's Research Hospital scientists have identified problems in a connection between brain structures that may predispose individuals to hearing the "voices" that are a common symptom of schizophrenia. The work ...

Rare genetic disorder points to molecules that may play role in schizophrenia

October 9, 2012
Scientists studying a rare genetic disorder have identified a molecular pathway that may play a role in schizophrenia, according to new research in the October 10 issue of The Journal of Neuroscience. The findings may one ...

Altered brain activity responsible for cognitive symptoms of schizophrenia

March 20, 2013
Cognitive problems with memory and behavior experienced by individuals with schizophrenia are linked with changes in brain activity; however, it is difficult to test whether these changes are the underlying cause or consequence ...

Improving the search for new schizophrenia treatments

April 5, 2013
(Medical Xpress)—Controlling the symptoms of schizophrenia is the job of antipsychotic drugs which block a set of specific neural signals. But the way these drugs work can lead to a host of severe and debilitating long-term ...

Schizophrenia and cannabis use may share common genes

June 24, 2014
Genes that increase the risk of developing schizophrenia may also increase the likelihood of using cannabis, according to a new study led by King's College London, published today in Molecular Psychiatry.

Rhythmic bursts of electrical activity from cells in ear teach brain how to hear

May 21, 2014
A precise rhythm of electrical impulses transmitted from cells in the inner ear coaches the brain how to hear, according to a new study led by researchers at the University of Pittsburgh School of Medicine. They report the ...

Recommended for you

In witnessing the brain's 'aha!' moment, scientists shed light on biology of consciousness

July 27, 2017
Columbia scientists have identified the brain's 'aha!' moment—that flash in time when you suddenly become aware of information, such as knowing the answer to a difficult question. Today's findings in humans, combined with ...

Scientists block evolution's molecular nerve pruning in rodents

July 27, 2017
Researchers investigating why some people suffer from motor disabilities report they may have dialed back evolution's clock a few ticks by blocking molecular pruning of sophisticated brain-to-limb nerve connections in maturing ...

Social influences can override aggression in male mice, study shows

July 27, 2017
Stanford University School of Medicine investigators have identified a cluster of nerve cells in the male mouse's brain that, when activated, triggers territorial rage in a variety of situations. Activating the same cluster ...

Scientists become research subjects in after-hours brain-scanning project

July 27, 2017
A quest to analyze the unique features of individual human brains evolved into the so-called Midnight Scan Club, a group of scientists who had big ideas but almost no funding and little time to research the trillions of neural ...

Researchers reveal unusual chemistry of protein with role in neurodegenerative disorders

July 27, 2017
A common feature of neurodegenerative diseases is the formation of permanent tangles of insoluble proteins in cells. The beta-amyloid plaques found in people with Alzheimer's disease and the inclusion bodies in motor neurons ...

Mother's brain reward response to offspring reduced by substance addiction

July 27, 2017
Maternal addiction and its effects on children is a major public health problem, often leading to high rates of child abuse, neglect and foster care placement. In a study published today in the journal Human Brain Mapping, ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.