Brain stimulation protocol reduces spasticity in spinal cord injury patients

June 19, 2017

Spasticity, uncontrolled muscle contractions, is a common disorder experienced by patients with spinal cord injuries (SCI). Previous studies have shown that excitatory repetitive transcranial magnetic stimulation (rTMS) can reduce spasticity. In a new study published in Restorative Neurology and Neuroscience, researchers found that a protocol of rTMS, excitatory intermittent theta burst stimulation (iTBS), was successful in reducing spasticity in patients with SCI and therefore may be a promising therapeutic tool.

"The aim of this study was to assess whether a different rTMS protocol may have significant beneficial clinical effects in the treatment of lower limb spasticity in SCI , namely iTBS, a safe, non-invasive and well-tolerated protocol of rTMS. Patients receiving real iTBS, compared to those receiving sham treatment, showed significant improvement," explained lead investigator Raffaele Nardone, MD, PhD, Paracelsus Medical University, Salzburg, Austria, and the Franz Tappeiner Hospital, Merano, Italy.

Ten patients with chronic SCI, classified as grades C or D according to the American Spinal Cord Injury Association Impairment Scale, participated in the study. Five received real treatment and the remaining five received sham treatment. After two months, the sham group was switched to real iTBS and the study continued. All eligible patients took antispastic medications and received physical therapy, both before and after the study.

Patients receiving real iTBS showed significant positive effects in several measurements of nerve function, suggesting increased cortical excitability and decreased spinal excitability. Other improvements measured by the Modified Ashworth Scale and the Spinal Cord Injury Assessment Tool persisted up to one week after the end of the iTBS treatment.

Motor-evoked potentials (MEP) were measured in the soleus, or calf muscle, during magnetic stimulation over the most responsive area of the scalp. M-wave and H reflexes, which are measures of muscle contractions due to stimulation of the tibial nerve, were assessed for each subject and a Hmax/Mmax ratio was determined. These measurements were used to assess any changes in spasticity over the two-week stimulation period and the four weeks afterwards.

"Although this study has a small sample size and validation with data from a larger group of patients is needed to confirm the results, our findings clearly suggest that iTBS can be considered as a promising tool for the of spasticity in patients with traumatic SCI and perhaps for other pathological conditions. In comparison with standard rTMS protocols, iTBS represents a more feasible approach because of lower stimulation intensity and shorter duration of application in each single session," commented Dr. Nardone.

Explore further: Magnetic stimulation effective in helping Parkinson's patients walk

More information: Raffaele Nardone et al, Effects of intermittent theta burst stimulation on spasticity after spinal cord injury, Restorative Neurology and Neuroscience (2017). DOI: 10.3233/RNN-160701

Related Stories

Magnetic stimulation effective in helping Parkinson's patients walk

August 31, 2015
About 50% of patients with Parkinson's disease (PD) experience freezing of gait (FOG), an inability to move forward while walking. This can affect not only mobility but also balance. In a new study published in Restorative ...

Repeated stimulation treatment can restore movement to paralyzed muscles

July 15, 2016
Conducted at the BioMag laboratory at the Helsinki University Hospital, a new patient study could open a new opportunity to rehabilitate patients with spinal cord damage.

Magnetic stimulation of the brain may help patients with cocaine addiction

December 3, 2015
Targeted magnetic pulses to the brain were shown to reduce craving and substance use in cocaine-addicted patients. The results of this pilot study, published in the peer-reviewed journal European Neuropsychopharmacology, ...

Short-term benefits seen with repetitive transcranial magnetic stimulation for focal hand dystonia

April 9, 2013
Repetitive transcranial magnetic stimulation (rTMS) is being increasingly explored as a therapeutic tool for movement disorders associated with deficient inhibition throughout the central nervous system. This includes treatment ...

Two potential therapeutic avenues for spasticity

March 17, 2016
Following spinal cord injury, most patients experience an exaggeration of muscle tone called spasticity, which frequently leads to physical disability. A team at the Institut de Neurosciences de la Timone (CNRS/Aix-Marseille ...

Tickling the brain with magnetic stimulation improves memory in schizophrenia

March 12, 2013
Cognitive impairments are disabling for individuals with schizophrenia, and no satisfactory treatments currently exist. These impairments affect a wide range of cognition, including memory, attention, verbal and motor skills, ...

Recommended for you

Scientists discover powerful potential pain reliever

August 16, 2017
A team of scientists led by chemists Stephen Martin and James Sahn at The University of Texas at Austin have discovered what they say is a powerful pain reliever that acts on a previously unknown pain pathway. The synthetic ...

Scientists use magnetic fields to remotely stimulate brain—and control body movements

August 16, 2017
Scientists have used magnetism to activate tiny groups of cells in the brain, inducing bodily movements that include running, rotating and losing control of the extremities—an achievement that could lead to advances in ...

Researchers discover fundamental pathology behind ALS

August 16, 2017
A team led by scientists at St. Jude Children's Research Hospital and Mayo Clinic has identified a basic biological mechanism that kills neurons in amyotrophic lateral sclerosis (ALS) and in a related genetic disorder, frontotemporal ...

Scientists give star treatment to lesser-known cells crucial for brain development

August 16, 2017
After decades of relative neglect, star-shaped brain cells called astrocytes are finally getting their due. To gather insight into a critical aspect of brain development, a team of scientists examined the maturation of astrocytes ...

The nerve-guiding 'labels' that may one day help re-establish broken nervous connections

August 16, 2017
Scientists have identified a large group of biological 'labels' that guide nerves to ensure they make the correct connections and control different parts of the body. Although their research was conducted with fruit flies, ...

Navigation and spatial memory—new brain region identified to be involved

August 16, 2017
Navigation in mammals including humans and rodents depends on specialized neural networks that encode the animal's location and trajectory in the environment, serving essentially as a GPS, findings that led to the 2014 Nobel ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.