Engineers examine chemo-mechanics of heart defect

June 28, 2017 by Erika Ebsworth-Goold, Washington University in St. Louis
Elastin and collagen cross-link throughout the body, as shown here in healthy cardiac tissue. Engineers at Washington University in St. Louis say better understanding both the mechanical and chemical attributes of a genetic defect that impact those cross-links could lead to a better understanding of how to prevent certain types of aneurysms. Credit: Washington University in St. Louis

Elastin and collagen serve as the body's building blocks. They provide tensile strength and elasticity for a number of organs, muscles and tissues. Any genetic mutation short-circuiting their function can have a devastating, and often lethal, health impact.

For the first time, new research led by engineers at Washington University in St. Louis takes a closer look at both genetic and mechanical attributes, to better understand a disorder that affects how elastin and function.

"Collagen and elastin are everywhere," said Jessica Wagenseil, associate professor of mechanical engineering & materials science at the School of Engineering & Applied Science. "They are in your blood vessels, your skin, your lungs. If they are not working properly, you can have problems in any of these organs."

Wagenseil's novel approach, recently published in Heart and Circulatory Physiology, focused on the genetic signaling and mechanical effects of mutations in lysyl oxidase, or LOX. LOX is a comprised of copper enzyme that cross-links collagen and elastin; a lack of the compound has been linked to aortic aneurysm risk in humans.

To learn more about exactly how LOX deficiency can lead to an aneurysm, Wagenseil and collaborators at Washington University School of Medicine examined tissue taken from mice born without LOX, and compared it to tissue taken from healthy mice. In the LOX deficient mice, they observed changes in and in signaling of groups of genes that appeared to be a susceptibility differentiator in certain sections of tissue; the way they interacted seemed to provide some protection against aneurysm.

"We're really interested in how the cells respond to major changes in mechanics," Wagenseil said. "So when you take out this enzyme, and you have and collagen that aren't cross-linked, they have totally different mechanical behavior. We expect to see those mechanical differences, but we found that there's this combination of the mechanics and the gene signaling that work together to lead to an ."

Wagenseil collaborated with Robert Mecham, Alumni Endowed Professor of Cell Biology and Physiology, and Professor of Medicine, Pediatrics and Bioengineering at the School of Medicine for the research.

"We're trying to understand signals that initiate aneurysms," Wagenseil said. "We examined the chemo-mechanical environment, looked at the two factors and how they worked in synch and changed together, which leads to the disease."

Wagenseil's next step: determining the role of inflammatory agents in LOX-deficient aneurysms.

Explore further: Research suggests new contributor to heart disease

More information: Marius Catalin Staiculescu, Jungsil Kim, Robert P. Mecham, Jessica Wagenseil "Mechanical behavior and matrisome gene expression in aneurysm-prone thoracic aorta of newborn lysyl oxidase knockout mice." Heart and Circulatory Physiology. May 26, 2017 DOI: 10.1152/ajpheart.00712

Related Stories

Research suggests new contributor to heart disease

May 18, 2016
Medical professionals have long known that the buildup of plaque in arteries can cause them to narrow and harden, potentially leading to a whole host of health problems—including heart attack, heart disease and stroke. ...

Uncovering the biology of a painful and disfiguring pediatric disease

June 12, 2017
Hyaline Fibromatosis Syndrome (HFS) is a rare but severe genetic disease that affects babies, children, and adults. A glassy substance called hyaline accumulates in the skin and various organs of patients, causing painful ...

Discovery yields answers for family with thoracic aortic aneurysm and dissection

July 18, 2016
A new finding by clinicians and geneticists may solve a medical mystery that one family has faced for the last 15 years and help identify the cause of a rare aortic disease in other patients as well. Through genetic analysis ...

Skin cell model advances study of genetic mutation linked to heart disease, stroke risk

June 27, 2017
Using a new skin cell model, researchers have overcome a barrier that previously prevented the study of living tissue from people at risk for early heart disease and stroke. This research could lead to a new understanding ...

New study shows tissue healing response following a heart attack

February 8, 2017
In the weeks following a heart attack, the injured heart wall acquires more collagen fibers that are significantly less stiff due to a lack of fiber crosslinks, according to a new study by a University of Arkansas researcher ...

Recommended for you

Surgery involving ultrasound energy found to treat high blood pressure

May 23, 2018
An operation that targets the nerves connected to the kidney has been found to significantly reduce blood pressure in patients with hypertension, according to the results of a clinical trial led in the UK by Queen Mary University ...

To have or not to have... your left atrial appendage closed

May 22, 2018
Each year in the U.S., more than 300,000 people have heart surgery. To reduce risk of stroke for their patients, surgeons often will close the left atrial appendage, which is a small sac in the left side of the heart where ...

Natural antioxidant bilirubin may improve cardiovascular health

May 18, 2018
Bilirubin, a yellow-orange pigment, is formed after the breakdown of red blood cells and is eliminated by the liver. It's not only a sign of a bruise, it may provide cardiovascular benefits, according to a large-scale epidemiology ...

New algorithm more accurately predicts life expectancy after heart failure

May 17, 2018
A new algorithm developed by UCLA researchers more accurately predicts which people will survive heart failure, and for how long, whether or not they receive a heart transplant. The algorithm would allow doctors to make more ...

New genes found that determine how the heart responds to exercise

May 17, 2018
A new study by researchers at Queen Mary University of London and University College London (UCL) has discovered 30 new gene locations that determine how the heart responds to and recovers from exercise.

Novel therapy inhibits complement to preserve neurons and reduce inflammation after stroke

May 16, 2018
A team of investigators at the Medical University of South Carolina (MUSC) has developed a novel therapy for ischemic (clot-caused) stroke and has shown in a preclinical model that it locally inhibits complement at and around ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.