Cognitive-related neural pattern to activate machines

June 14, 2017, Autonomous University of Barcelona
Task was developed by the subjects. 1. The rat goes next to iPad. 2. The rat waits near the iPad and generates the cognitive-related brain pattern selected by researchers. Consequently, a visual stimulus appears on the iPad's screen. 3. The rat touches the stimulus on the iPad. 4. The rats goes to feeder to get the obtained reward. 5. The rat eats the food and re-starts the cycle. Credit: www.divisiondeneurociencias.es (UPO) and Neuro-Com (UAB).

Brain-machine interfaces represent a solution for people with physical difficulties to communicate with their physical and social environment. In this work, researchers have identified a functional brain pattern in the prefrontal cortex associated with cognitive processes, and have used it to activate an iPad touchscreen.

The use of the neural cortical activity for operant conditioning tasks has existed for decades. The new device allows the activation of any environmental instrument through specific electrical brain signals selected at will. In this research, authors worked with electrical brain signals that allowed the activation of the iPad's touchscreen. At the same time, experimental animals had to touch stimuli presented on the iPad to obtain a reward and, thus, to properly complete the task.

One of the most interesting results of this research is that rats learned to increase the frequency of the selected throughout successive experimental sessions, with the aim of obtaining the reward. Authors also prove that the selected pattern is connected to and not to motor or behavioral activity, which represents important progress in the design of brain-machine interfaces. Another result of interest is that the selected brain pattern did not modify its functional properties after being used to activate the associative learning. Therefore, the (a brain area particularly connected to mental processes and states) has the ability to produce an oscillatory pattern that rats can generate to control their environment. This work is expected to advance in the area of brain-machine interactions.

Explore further: Brain circuit enables split-second decisions when cues conflict

More information: Samuel Hernández-González et al, A cognition-related neural oscillation pattern, generated in the prelimbic cortex, can control operant learning in rats, The Journal of Neuroscience (2017). DOI: 10.1523/JNEUROSCI.3651-16.2017

Related Stories

Brain circuit enables split-second decisions when cues conflict

April 24, 2017
When animals hunt or forage for food, they must constantly weigh whether the chance of a meal is worth the risk of being spotted by a predator. The same conflict between cost and benefit is at the heart of many of the decisions ...

Conclusions on brain-machine interfaces for communication and rehabilitation

October 5, 2016
In the journal Nature Reviews Neurology, the researcher Ander Ramos of Tecnalia, with Niel Birbaumer, lecturer at the University of Tübingen, have expounded how brain-machine interfaces (BMI) use brain activity to control ...

Scientists demonstrate the existence of 'social neurons'

May 25, 2017
The existence of new "social" neurons has just been demonstrated by scientists from the Institut de neurosciences des systèmes (Aix-Marseille University / INSERM), the Laboratoire de psychologie sociale et cognitive (Université ...

Finding traces of memory processing during sleep

May 17, 2017
Sleep helps us to retain the information that we have learned during the day. We know from animal experiments that new memories are reactivated during sleep. The brain replays previous experience while we sleep – and this ...

Brain's prefrontal lobe is major player in Parkinson's Gait

August 10, 2016
A new study by Tel Aviv University researchers demonstrates that the prefrontal cortex, the part of the brain associated with cognitive functions, plays a major role in "Parkinson's Gait." It suggests a radically new understanding ...

Brain's motor cortex uses multiple frequency bands to coordinate movement

February 21, 2014
Synchrony is critical for the proper functioning of the brain. Synchronous firing of neurons within regions of the brain and synchrony between brain waves in different regions facilitate information processing, yet researchers ...

Recommended for you

Do you see what I see? Researchers harness brain waves to reconstruct images of what we perceive

February 22, 2018
A new technique developed by neuroscientists at the University of Toronto Scarborough can, for the first time, reconstruct images of what people perceive based on their brain activity gathered by EEG.

Neuroscientists discover a brain signal that indicates whether speech has been understood

February 22, 2018
Neuroscientists from Trinity College Dublin and the University of Rochester have identified a specific brain signal associated with the conversion of speech into understanding. The signal is present when the listener has ...

Study in mice suggests personalized stem cell treatment may offer relief for multiple sclerosis

February 22, 2018
Scientists have shown in mice that skin cells re-programmed into brain stem cells, transplanted into the central nervous system, help reduce inflammation and may be able to help repair damage caused by multiple sclerosis ...

Biomarker, clues to possible therapy found in novel childhood neurogenetic disease

February 22, 2018
Researchers studying a rare genetic disorder that causes severe, progressive neurological problems in childhood have discovered insights into biological mechanisms that drive the disease, along with early clues that an amino ...

A look at the space between mouse brain cells

February 22, 2018
Between the brain's neurons and glial cells is a critical but understudied structure that's been called neuroscience's final frontier: the extracellular space. With a new imaging paradigm, scientists can now see into and ...

Nolan film 'Memento' reveals how the brain remembers and interprets events from clues

February 22, 2018
Key repeating moments in the film give viewers the information they need to understand the storyline. The scenes cause identical reactions in the viewer's brain. The results deepen our understanding of how the brain functions, ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.