Researchers target gene to treat inflammatory bowel disease

June 21, 2017 by Becky Freemal, Virginia Tech
Treatments targeting a gene known as NLRX1 could help provide relief to the estimated 1.6 million Americans currently suffering from inflammatory bowel disease. Credit: Virginia Tech

Researchers at the Biocomplexity Institute of Virginia Tech have discovered a new therapeutic target for inflammatory bowel disease—and it's right inside our immune cells.

The research at the Nutritional Immunology and Molecular Medicine Laboratory (NIMML), at the Biocomplexity Institute of Virginia Tech, targeted the gene known as NLRX1 as one that has potential therapeutic effects to aid in the treatment of .

This investigation into how immunology and interface may hold critical answers for next generation nutritional immunology. The findings from the team's most recent research were published in the Journal of Immunology.

It's this sort of discovery that has the potential to customize healthcare for the individual, from personalized nutrition to precision medicine. The team uncovered new mechanistic insights into the role of NLRX1, targeting cellular metabolism and offering new therapeutic possibilities beyond traditional targets in autoimmune disease treatment.

"For decades, immunologists have applied reductionist approaches to studying the smallest details of the immune response without considering crucial system-wide interactions with nutrition and metabolism," said Josep Bassaganya-Riera, director of NIMML, a professor of immunology, and CEO of BioTherapeutics. "Our laboratory has built predictive computational and mathematical models and artificial intelligence pipelines capable of analyzing complex, massively interacting systems, including interactions between immunity and metabolism. This study not only elucidates novel mechanisms of immunoregulation in IBD, but it also validates transcriptomic and computational modeling studies that predicted the importance of NLRX1 in regulating gastrointestinal inflammation and its potential as a therapeutic target for infectious and immune-mediated diseases."

Due to an incomplete understanding of how NLRX1 works to decrease inflammation, scientific attempts to target this molecule as a treatment for the disease had previously stalled. The lab team's findings provide a deeper understanding of this gene's role in mucosal immunity and metabolism. This levels the playing field for both nutritional interventions that target NLRX1 and the development of NLRX1-based drugs.

"This seminal work, while impactful independently, sets the stage for the next lines of applied investigation on the role of NLRX1 in IBD," said Andrew Leber, scientific director of BioTherapeutics. "It highlights the need to understand not only the immediately relevant pathways for novel immunoregulatory genes, but their global effect on all of the cohesive metabolic and immunological processes within a cell, a goal that we will continue to pursue."

This work builds upon NIMML's successful track record in leading innovative transdisciplinary research at the interface of nutrition, immunity, and metabolism that dates back to its founding in 2002. The NIMML team has been involved in establishing spinoff companies that translate new scientific discoveries into the development of marketable products that address unmet consumer or clinical needs.

Explore further: Solving the immunity puzzle takes collaboration among different fields

More information: Andrew Leber et al. NLRX1 Regulates Effector and Metabolic Functions of CD4T Cells, The Journal of Immunology (2017). DOI: 10.4049/jimmunol.1601547

Related Stories

Solving the immunity puzzle takes collaboration among different fields

March 20, 2017
Studying the human immune system is like trying to work a vast, multidimensional jigsaw puzzle with pieces that are constantly changing shape. Billions of microbes interact with the host, shaping the processes that keep us ...

Researchers discover colorectal cancer biomarker, potential personalized treatment

March 11, 2016
UNC Lineberger Comprehensive Cancer Center researchers have discovered that a deficiency in a key protein that regulates immune system warning signals could be a new biomarker for colorectal cancer, the second largest cancer ...

New research explains why HIV is not cleared by the immune system

April 13, 2016
Scientists at the University of North Carolina (UNC) School of Medicine and Sanford Burnham Prebys Medical Discovery Institute (SBP) have identified a human (host) protein that weakens the immune response to HIV and other ...

Scientists describe new protein's role in immune response to pathogens

June 28, 2011
The human immune system is a double-edged sword.  While it is finely adapted to fighting potentially deadly viruses, such as the H1N1 influenza, the mechanisms it uses to fight pathogens can have negative effects such ...

Botanical compound could prove crucial to healing influenza

July 18, 2012
Building on previous work with the botanical abscisic acida, researchers in the Nutritional Immunology and Molecular Medicine Laboratory (NIMML) have discovered that abscisic acid has anti-inflammatory effects in the lungs ...

Novel therapy for Crohn's disease discovered

March 19, 2012
The Nutritional Immunology and Molecular Medicine Laboratory (NIMML) research team at Virginia Tech has discovered important new information on the efficacy of conjugated linoleic acid (CLA) in treating Crohn's disease, a ...

Recommended for you

Our intestinal microbiome influences metabolism—through the immune system

June 21, 2018
Research tells us that the commensal or "good" bacteria that inhabit our intestines help to regulate our metabolism. A new study in fruit flies, published June 21 in Cell Metabolism, shows one surprising way they do this.

Human immune 'trigger' map paves way for better treatments

June 21, 2018
A discovery about how human cells are 'triggered' to undergo an inflammatory type of cell death could have implications for treating cancer, stroke and tissue injury, and immune disorders.

Fetal T cells are first responders to infection in adults

June 20, 2018
Cornell University researchers have discovered there is a division of labor among immune cells that fight invading pathogens in the body.

How a thieving transcription factor dominates the genome

June 20, 2018
One powerful DNA-binding protein, the transcription factor PU.1, steals away other transcription factors and recruits them for its own purposes, effectively dominating gene regulation in developing immune cells, according ...

Composition of complex sugars in breast milk may prevent future food allergies

June 12, 2018
The unique composition of a mother's breastmilk may help to reduce food sensitization in her infant, report researchers at the University of California San Diego School of Medicine with colleagues in Canada.

Drug may quell deadly immune response when trauma spills the contents of our cells' powerhouses

June 11, 2018
When trauma spills the contents of our cell powerhouses, it can evoke a potentially deadly immune response much like a severe bacterial infection.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.