Collagen controlling the thickness and juvenile state of skin

July 11, 2017, Hokkaido University
Neonatal mice (postnatal day 1) lacking COL17 showed epidermal hyper proliferation and thickened skin (right panels) compared to control skins (left panels). Different staining methods are applied in the upper panels and the lower panels. Scale bar: 20μm. Credit: Watanabe M., et al. eLIFE, July 11, 2017.

Type XVII collagen (COL17) is found to regulate the proliferation of epidermal cells and therefore the thickness of juvenile and aged skin, suggesting COL17 can potentially be used for future anti-aging strategies.

Skin is the body's largest organ and is constantly confronted with a range of including microorganisms and physical stress. Epidermis, the outer part of the skin, functions as a barrier to the external environment and works to prevent the loss of water from inside the body. As abnormalities in epidermal thickness can impair the properties of one's skin, the proliferation of is tightly regulated in organismal development and physical aging although most of the underlying mechanisms are unknown.

Using mouse and as well as mathematical modelling, Dr. Ken Natsuga and Dr. Hiroshi Shimizu of Hokkaido University and their collaborators identified type XVII collagen (COL17), a protein expressed in the basal layer of the epidermis, as a key molecule that controls epidermal proliferation in non-haired skin.

The team found that COL17 prevents the epidermal cells from over-proliferating and thus preventing the skin from thickening in neonatal mice in coordination with Wnt signaling, which is generally involved in the proliferation of . In the experiments using mice, they also discovered that physical aging induces epidermal thickening and alters epithelial polarity accompanied by drastic alteration of COL17 distribution in the skin. Introduction of human COL17 helped the epidermis maintain its juvenile state even with the advancement of aging.

"Our findings advance our understanding of how the proliferation of epidermal cells is regulated at different stages of a mammal's life. Although further study is needed to uncover how COL17 expression is regulated, this protein could be a promising component in future anti-aging strategies for skin," says Natsuga.

Explore further: New insights into skin cells could explain why skin doesn't leak

More information: Mika Watanabe et al, Type XVII collagen coordinates proliferation in the interfollicular epidermis, eLife (2017). DOI: 10.7554/eLife.26635

Related Stories

New insights into skin cells could explain why skin doesn't leak

November 30, 2016
The discovery of the shape and binding capability of epidermal cells could explain how skin maintains a barrier even when it is shedding.

The skin aging regulator

January 22, 2013
Despite progress in regenerative medicine, with age, the skin loses its properties in an irreversible manner. The ATIP-Avenir team "Epidermal homeostasis and tumorigenesis" directed by Chloé Féral, an Inserm researcher ...

Skin layer grown from human stem cells could replace animals in drug and cosmetics testing

April 24, 2014
An international team led by King's College London and the San Francisco Veteran Affairs Medical Center (SFVAMC) has developed the first lab-grown epidermis – the outermost skin layer - with a functional permeability barrier ...

How renewal and differentiation of the skin's stem cells are regulated

July 16, 2014
The human body maintains a healthy layer of skin thanks to a population of stem cells that reside in the epidermis. Previously, the signals responsible for regulating these so-called 'interfollicular epidermal stem cells' ...

Recommended for you

This matrix delivers healing stem cells to injured elderly muscles

August 15, 2018
A car accident leaves an aging patient with severe muscle injuries that won't heal. Treatment with muscle stem cells from a donor might restore damaged tissue, but doctors are unable to deliver them effectively. A new method ...

Research shows it's possible to reverse damage caused by aging cells

August 15, 2018
What's the secret to aging well? University of Minnesota Medical School researchers have answered it- on a cellular level.

Male tobacco smokers have brain-wide reduction of CB1 receptors

August 15, 2018
Chronic, frequent tobacco smokers have a decreased number of cannabinoid CB1 receptors, the "pot receptor", when compared with non-smokers, reports a study in Biological Psychiatry.

Byproducts of 'junk DNA' implicated in cancer spread

August 14, 2018
The more scientists explore so-called "junk" DNA, the less the label seems to fit.

Doctors may be able to enlist a mysterious enzyme to stop internal bleeding

August 14, 2018
Blood platelets are like the sand bags of the body. Got a cut? Platelets pile in to clog the hole and stop the bleeding.

Artificial placenta created in the laboratory

August 14, 2018
In order to better understand important biological membranes, it is necessary to explore new methods. Researchers at Vienna University of Technology (Vienna) have succeeded in creating an artificial placental barrier on a ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.