Study sheds light on regulation of hair growth across the entire body

July 11, 2017, University of California, Irvine
Study findings may lead to new ways of addressing both balding and unwanted hair growth. public domain/Pixabay

To paraphrase the classic poem, no hair is an island entire of itself.

Instead, University of California, Irvine scientists have discovered that all hairs can communicate with each other and grow in coordination across the entire body. This is regulated by a single molecular mechanism that adjusts by skin region to ensure efficient hair growth - so no bald patches form - and enable distinct hair densities in different body areas.

In animals, this regulatory process is important for survival in the wild. In humans, these findings could lead to new ways of addressing both balding and unwanted hair growth - and further understanding of how regions of faster and slower regeneration work in coordination in other fast-renewing tissues, such as the intestines and bone marrow.

For the study, the researchers used the first mouse model of poor hair growth to analyze human-like hair behavior that leads to baldness. Their results appear in eLife, an open-access journal focusing on the life and biomedical sciences. UCI's Maksim Plikus, assistant professor of developmental & cell biology, and Qing Nie, professor of mathematics, led the effort. Ji Won Oh from Plikus' lab and Qixuan Wang from Nie's lab contributed equally to this work.

How skin regions communicate

The researchers focused on the interaction of the Wnt signaling pathway, which is important in embryonic development and regeneration, and bone morphogenetic proteins, which are hair growth inhibitory factors.

While previous studies have shown that Wnt-BMP signals regulate hair growth in certain body areas, it was not known how different skin regions communicate with one another to coordinate hairs across their borders. By combining expertise in mathematical modeling from Nie's lab and expertise in skin studies from Plikus' lab, Wnt-BMP regulation was found to be ubiquitous across all skin.

"In analogy with languages spoken in two neighboring countries, it was unclear how the back skin 'talks' with the belly skin to coordinate the tasks of growing hairs," Plikus said. "We showed that although different signaling 'dialects' may exist between belly and back skin, for instance, all hairs can understand one another through the use of similar 'words' and 'sentences.'"

The roots of hair growth problems

A breakdown of this complex signaling could uncover the roots of human hair growth irregularities and point to solutions.

For example, common male pattern baldness affects frontal and crown regions but not the back of the head. In adult humans, messaging among scalp hairs appears to stop, and every hair follicle is thought to grow independently.

"If communication between nonbalding and balding regions can be reactivated, hair growth signals can then start spreading across the entire head skin, preventing regional baldness," Plikus said.

"Just like scalp skin can show hair growth deficiency, skin in other body sites - such as the face, arms and legs - can often show that can be cosmetically undesirable," he added. "Our findings suggest that increased signaling crosstalk among hair follicles could be one major reason for this."

What's next?

Plikus said that Wnt and BMP signaling activities can be regulated pharmacologically. "Our study identified the types of Wnt-BMP signaling levels that are very favorable for hair growth and the types that prevent it," he said. "It provides the road map for optimizing Wnt-BMP levels to achieve enhanced hair growth."

He added that the findings point toward additional signaling factors - besides Wnt and BMP - positively correlated with robust growth. Studying these will be the researchers' next step.

Nie noted that laboratory experiments can be insufficient to study complex biological functions, such as across the entire . "In such cases, mathematical modeling can greatly assist in the discovery process," he said. "Our new mathematical model predicted details of signaling communications between hairs, otherwise difficult to reveal with standard biological experiments alone."

Explore further: Activating pathway could restart hair growth in dormant hair follicles

More information: Qixuan Wang et al. A multi-scale model for hair follicles reveals heterogeneous domains driving rapid spatiotemporal hair growth patterning, eLife (2017). DOI: 10.7554/eLife.22772

Related Stories

Activating pathway could restart hair growth in dormant hair follicles

December 5, 2013
A pathway known for its role in regulating adult stem cells has been shown to be important for hair follicle proliferation, but contrary to previous studies, is not required within hair follicle stem cells for their survival, ...

New hair growth mechanism discovered

May 25, 2017
In experiments in mice, UC San Francisco researchers have discovered that regulatory T cells (Tregs; pronounced "tee-regs"), a type of immune cell generally associated with controlling inflammation, directly trigger stem ...

Using fat to help wounds heal without scars

January 5, 2017
Doctors have found a way to manipulate wounds to heal as regenerated skin rather than scar tissue. The method involves transforming the most common type of cells found in wounds into fat cells - something that was previously ...

Yale scientists find stem cells that tell hair it's time to grow

September 1, 2011
Yale researchers have discovered the source of signals that trigger hair growth, an insight that may lead to new treatments for baldness.

Scientists find skin cells at the root of balding, gray hair

May 8, 2017
UT Southwestern Medical Center researchers have identified the cells that directly give rise to hair as well as the mechanism that causes hair to turn gray – findings that could one day help identify possible treatments ...

Researchers identify mechanism that controls activation of stem cells during hair regeneration

January 16, 2008
Researchers at the University of Southern California have identified a novel cyclic signaling in the dermis that coordinates stem cell activity and regulates regeneration in large populations of hairs in animal models. The ...

Recommended for you

Discovery of inner ear function may improve diagnosis of hearing impairment

October 15, 2018
Results from a research study published in Nature Communications show how the inner ear processes speech, something that has until now been unknown. The authors of the report include researchers from Linköping University, ...

Team's study reveals hidden lives of medical biomarkers

October 12, 2018
What do medical biomarkers do on evenings and weekends, when they might be considered off the clock?

Widespread errors in 'proofreading' cause inherited blindness

October 12, 2018
Mistakes in "proofreading" the genetic code of retinal cells is the cause of a form of inherited blindness, retinitis pigmentosa (RP) caused by mutations in splicing factors.

Researchers create a functional salivary gland organoid

October 11, 2018
A research group led by scientists from Showa University and the RIKEN Center for Biosystems Dynamics Research in Japan have, for the first time, succeeded in growing three-dimensional salivary gland tissue that, when implanted ...

Lassa fever vaccine shows promise and reveals new test for immunity

October 11, 2018
Lassa fever belongs to the same class of hemorrhagic fevers as Ebola. Like Ebola, it has been a major health threat in Western Africa, infecting 100,000-300,000 people and killing 5,000 per year. A new vaccine against both ...

Genetically engineered 3-D human muscle transplant in a murine model

October 10, 2018
A growing need for tissues and organs in surgical reconstruction is addressed by the promising field of tissue engineering. For instance, muscle atrophy results from severe traumatic events including deep burns and cancer, ...

1 comment

Adjust slider to filter visible comments by rank

Display comments: newest first

betterexists
not rated yet Jul 11, 2017
Why are Bald Mice Ignored? Adult Stem Cells Successfully Regenerate Colored Human Hair on Bald Mouse http://www.medica...e-240171

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.