Researchers investigate possible link between carnitine deficiency and autism

July 13, 2017, Baylor College of Medicine
Credit: CC0 Public Domain

Researchers are always looking for new clues to the causes of autism, with special emphasis on prevention or treatment. At Baylor College of Medicine, Dr. Arthur Beaudet has been following clinical and genetic clues in patients with autism spectrum disorder and experimental results in animal models that have led him to propose that the lack of carnitine, a nutrient needed for the normal development and workings of the brain, the liver, the heart and other muscles, might be involved in triggering mild forms of autism.

In a publication in the journal BioEssays, Beaudet, the Henry and Emma Meyer Chair and Professor of Molecular and Human Genetics, emphasizes that more research is needed to confirm this idea and speculates that, if confirmed, it could lead to the prevention of 10 to 20 percent of cases of by supplementing carnitine to infants.

In the Beaudet lab, graduate student Patricia Celestino-Soper discovered in 2009 that about 1 in 350 males in the population cannot synthesize their own carnitine; they have an inactive copy of the TMLHE gene, which is located on the X chromosome.

"Of the nearly 460,000 males in the United States who have TMLHE gene deficiency, only about 3 percent develop autism. The remaining 97 percent become healthy adults," Beaudet said. "Sometimes behavioral regression occurs."

The regression of skills might be as subtle as first having a social smile and playfulness at 6 to 8 months of age and then losing these skills. Sometimes, the regression of skills occurs later and is more dramatic. Although TMLHE deficiency is present in only about 1 percent of autism cases, Beaudet proposes that carnitine deficiency in the brain might cause a much larger fraction of autism.

"We speculate that the individuals with a normal physical examination and normal brain imaging results in studies, which represents 10 to 20 percent of all cases of , might have in common a mechanism that leads to a mild form of autism. This mechanism might involve brain carnitine deficiency," Beaudet said.

In the search for more evidence to support the link between carnitine deficiency and mild forms of autism that disproportionally affect males, Beaudet and colleagues looked for other genes on the X chromosome that might be involved with carnitine. They identified the SLC6A14 gene that is linked to the transport of carnitine across the blood-brain barrier and is expressed differently in females. There is no mutation in the gene, but healthy girls will express more of this activity and perhaps more transport into the brain than healthy males.

"The proposed involvement of SLC6A14 could be tested in animal models by assessing the transport of carnitine across the blood brain barrier and testing for abnormalities resulting from brain carnitine deficiency," Beaudet said.

How could carnitine deficiency lead to a form of autism in an apparently healthy infant?

The researchers believe that most infants are born with adequate carnitine because "carnitine is usually delivered across the placenta, and most infants are born with adequate carnitine stores," Beaudet said.

In addition, carnitine is abundant in breast milk, infant formulas and cow's milk, so infants will be protected from the deficiency as long as they are exclusively fed these products.

"In many cultures, when the infant is introduced to new foods between 4 and 8 months of age, the first non-milk foods are fruits, juices, cereals and vegetables, all of which contain almost no carnitine, and meats are introduced later," Beaudet said. "Eggs, dairy and meats all have more substantial amounts of carnitine. Red meats are particularly rich; 1 ounce of beef contains 2,000 times more carnitine than 1 ounce of white rice. When low-carnitine solid foods are added to the diet, the intake of carnitine drops in proportion to the reduction in milk intake.

This reduction in carnitine might lead to brain carnitine deficiency and autism. Many parents of children with autism spectrum disorder report picky eating and this may also reduce the amount of meat in the diet."

Beaudet and colleagues speculate that both the individual's genetic makeup and the environment might contribute to this form of autism. The researchers hypothesize that although there are dozens of genes that affect the metabolism of carnitine in the body, each gene might have a small effect, but no one gene has a severe disabling effect, such as often occurs in the more severe forms of autism. The diet is an equally important factor in this hypothesis. In addition, the researchers propose, other factors also may contribute, such as certain medications, minor illnesses (especially gastrointestinal conditions) and perhaps changes in the microbiome that might deplete carnitine from the body.

Some evidence might not support this hypothesis. Although carnitine deficiency has been reported in autism, "it is not reported as frequently as this hypothesis might suggest," Beaudet said.

One way to directly test this hypothesis could be by working with families who already have one child with a milder form of autism. In these families, the risk of having another child with autism spectrum disorder is high, especially if the child is a male.

"Families such as these could be enrolled in a study to determine whether supplementation with carnitine will reduce the frequency of autism in the new siblings. This would be a very direct and powerful test of the hypothesis," Beaudet said.

Beaudet indicates that the possibility that carnitine deficiency might be involved in mild forms of autism brings to the table the question of whether there should be a Recommended Daily Allowance (RDA) for carnitine in normal infant diets. In the 1980s, experts indicated that an RDA for carnitine was not necessary because the human body can make its own.

"We now know that 1 in 350 males indeed cannot synthesize carnitine. The need for an RDA for perhaps should be reviewed," Beaudet said.

Beaudet also is professor of molecular and cellular biology and of pediatrics at Baylor.

Explore further: Defective carnitine metabolism may play role in milder forms of autism

More information: BioEssays (2017). DOI: 10.1002/bies.201700012

Related Stories

Defective carnitine metabolism may play role in milder forms of autism

May 7, 2012
The deletion of part of a gene that plays a role in the synthesis of carnitine – an amino acid derivative that helps the body use fat for energy – may play a role in milder forms of autism (non-dysmorphic autism), ...

Research hints at a nutritional strategy for reducing autism risk

January 28, 2016
Folic acid has long been touted as an important supplement for women of childbearing age for its ability to prevent defects in the baby's developing brain and spinal cord. In fact, folic acid is considered so important that ...

A nutrient called carnitine might counteract gene mutations linked with autism risks

April 13, 2016
Autism spectrum disorders (ASDs) affect about one percent of the world's population. In the United States alone, about 1 in 68 children are on the spectrum, and between 40 and 60 percent of them are also diagnosed with some ...

L-carnitine may reduce muscle cramps in patients with cirrhosis

August 3, 2015
(HealthDay)—L-carnitine appears to be safe and effective for reducing muscle cramps in patients with cirrhosis, according to a study published in the August issue of Clinical Gastroenterology and Hepatology.

L-carnitine does not reduce cancer-related fatigue

September 18, 2012
(HealthDay)—Patients with invasive malignancies who take L-carnitine supplements do not experience a reduction in fatigue, pain, or depression, according to research published online Sept. 17 in the Journal of Clinical ...

Uncovering factors at the heart of muscle weakness

September 25, 2013
The most cited professor at Kanazawa University, Ikumi Tamai, has dedicated his career to investigating the molecules and genes responsible for cardiomyopathy, muscle weakness, and Reye's syndrome. His key discoveries relate ...

Recommended for you

Music improves social communication in autistic children

November 5, 2018
Engaging in musical activities such as singing and playing instruments in one-on-one therapy can improve autistic children's social communication skills, improve their family's quality of life, as well as increase brain connectivity ...

Unraveling a genetic network linked to autism

November 2, 2018
Donnelly Centre researchers have uncovered a genetic network linked to autism. The findings, described in the journal Molecular Cell, will facilitate developing new therapies for this common neurological disorder.

Study links gene mutation to neurodevelopmental disorders

November 2, 2018
A new model created by UCLA scientists reveals how the alteration of a specific gene increases the risk for neurodevelopmental problems in mice. When the researchers mutated the gene, it produced symptoms at specific ages ...

Common medications taken during pregnancy are not associated with risk for autism

October 31, 2018
Babies exposed in the womb to the majority of medications that target neurotransmitter systems, including typical targets of antidepressants and antipsychotic drugs, are not any more likely to develop autism than non-exposed ...

Brainwave activity reveals potential biomarker for autism in children

October 29, 2018
Autism spectrum disorder (ASD) is a neurodevelopmental disorder that can impair communication ability, socialization, and verbal and motor skills. It generally starts in early childhood and is diagnosed through behavior observation. ...

In kids with autism, short questionnaire may detect GI disorders

October 22, 2018
Anger, aggression, and other troubling behavior problems in kids with autism are often treated as psychological issues, but in many cases the problems can be traced to gastrointestinal distress.


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.