Research hints at a nutritional strategy for reducing autism risk

January 28, 2016
autism
Quinn, an autistic boy, and the line of toys he made before falling asleep. Repeatedly stacking or lining up objects is a behavior commonly associated with autism. Credit: Wikipedia.

Folic acid has long been touted as an important supplement for women of childbearing age for its ability to prevent defects in the baby's developing brain and spinal cord. In fact, folic acid is considered so important that it is added as a supplement to breads, pastas, rice and cereals to help ensure that women are exposed to sufficient amounts of this nutrient even before they know they're pregnant.

Soon, another prenatal supplement could protect against a certain type of autism, according to research published today in the journal Cell Reports. The supplement is called carnitine, and it is already available in the market.

Carnitine, which the body can manufacture itself or extract from dietary sources, is required for transport of into mitochondria—the compartment within the cell that converts these fats into energy. Previous studies have shown that inherited mutations in a gene (called TMLHE) that is required for carnitine biosynthesis are strongly associated with risk for development of autism-spectrum disorders, but the basis for that association has been unclear—until now. The latest findings show that genetic defects in the body's ability to manufacture carnitine might be associated with an increased risk of autism because carnitine deficiency interferes with the normal processes by which promote and organize embryonic and fetal brain development.

The study's lead author, Zhigang Xie, Ph.D., assistant research scientist at the Texas A&M Health Science Center College of Medicine, has refined a new technology that allows him to mark, follow and analyze individual neural stem cells in their native environment in a real developing brain. "It's very difficult to study neural stem cells in their complex natural environment," Xie said. "But now we have a technology that makes such studies possible."

"Until now, this technology has not been used in this way," added Vytas A. Bankaitis, Ph.D., the E.L. Wehner-Welch Foundation Chair in Chemistry at the Texas A&M College of Medicine and Xie's collaborator. "Our application of this technology is powerful because it allows us to identify specific neural stem cell defects that are invisible in the cell culture systems typically used by brain scientists. With regard to autism spectrum disorders, one has to consider the entire cellular environment, or niche."

Their work, which was funded by the National Institutes of Health and the Robert A. Welch Foundation, is important because some one percent of Americans are afflicted with autism, and the annual cost of autism management in the United States alone is estimated to be at least $236 billion.

The researchers found that neural stem cells unable to produce carnitine don't behave properly and are inappropriately depleted from the developing brain, but when genetically at-risk neural stem cells are supplied with carnitine from an outside source, they don't have the same problems.

Without getting too technical, the autism-associated TMLHE gene encodes an enzyme that the body needs to manufacture carnitine. Autism risk mutations inactivate this gene and, in the absence of their own ability to produce carnitine and without adequate outside supplementation, neural stem cells become less efficient at self-renewal. That is, when they divide, neural stem cells produce two "daughter" cells, one of which should remain a neural stem cell and the other that should differentiate. Neural stem cells confronted with carnitine deficiency too often divide to produce two differentiated cells, thereby failing to resupply the developing brain with a cache of neural .

"Inborn errors in carnitine production cause significant issues in a cell type one would believe has to contribute to autism risk," Bankaitis said. As the autism risk gene is located on the X chromosome and males have only one X chromosome (females have two), they are at greater risk.

Some pregnant women might absorb enough carnitine from their diet so as to make normal enzyme function less important in the context of autism risk for their babies. High levels of carnitine can be found in red meat, and one of the best vegetarian sources is whole milk. Women who don't ingest sufficient carnitine, however, might be placing their unborn child at risk.

Because the TMLHE is a recognized autism risk gene and its location on the chromosome is known, one possible first step for prevention is to test prospective mothers for TMLHE mutations before pregnancy. If a prospective mother is a carrier for the mutated autism risk gene, supplementation of her diet with carnitine before and during pregnancy could help ensure that a sufficient supply of the nutrient is available to the developing embryo and fetus, thus helping to offset the genetic defect.

"In retrospect, this preventative approach seems obvious," Bankaitis said. "But, metabolic deficiencies are complicated scenarios to interpret, and we believe these complexities obscured what will hopefully prove to be a rather simple path towards prevention."

It's important to note that this particular prevention strategy will not apply to all cases of autism. "Even if this strategy works, it will not be a panacea for reducing all autism risk," Bankaitis said. "While it could work in cases involving carnitine-deficiency, other pathways are also in play because as many as 1000 genes might ultimately be found to relate to autism risk. Still, the potential impact of even such a limited preventive strategy could be significant as mutant TMLHE alleles are surprisingly common in the human population."

"Here we have indications, at least for some types of , that a dietary carnitine prevention method might be effective," Xie said. "For some individuals, this simple nutritional supplement might really help reduce the risk of developing autism spectrum disorder. Any progress on the prevention front would be welcome given the number of people affected."

Explore further: Defective carnitine metabolism may play role in milder forms of autism

Related Stories

Defective carnitine metabolism may play role in milder forms of autism

May 7, 2012
The deletion of part of a gene that plays a role in the synthesis of carnitine – an amino acid derivative that helps the body use fat for energy – may play a role in milder forms of autism (non-dysmorphic autism), ...

Untapped region in brain cell offers goldmine of drug targets for new autism treatments

January 12, 2016
UCLA scientists have discovered that an overlooked region in brain cells houses a motherlode of mutated genes previously tied to autism. Recently published in Neuron, the finding could provide fresh drug targets and lead ...

Making 'miniature brains' from skin cells to better understand autism

July 16, 2015
A larger head size—or macrocephaly—is seen in many children with severe autism spectrum disorder (ASD). A new stem cell study of these children by Yale School of Medicine researchers could help predict ASD and may lead ...

Study ties autism risk to prenatal exposure to asthma drugs

January 6, 2016
(HealthDay)—Children whose mothers took certain asthma drugs during pregnancy may have a slightly increased risk of autism, a new study suggests.

Study finds link between neural stem cell overgrowth and autism-like behavior in mice

October 9, 2014
People with autism spectrum disorder often experience a period of accelerated brain growth after birth. No one knows why, or whether the change is linked to any specific behavioral changes.

L-carnitine may reduce muscle cramps in patients with cirrhosis

August 3, 2015
(HealthDay)—L-carnitine appears to be safe and effective for reducing muscle cramps in patients with cirrhosis, according to a study published in the August issue of Clinical Gastroenterology and Hepatology.

Recommended for you

Scientists make autism advance using monkey model

August 21, 2017
Autism is a common neurodevelopmental disorder characterized by impaired social communication and restricted and repetitive behavior or interests. The reported prevalence of autism has been rising worldwide. Due to the application ...

High quality early intervention for children with autism quickly results in costs savings

August 8, 2017
One in every 68 children in the United States has autism spectrum disorder (ASD), a neuro-developmental disorder that results in difficulty socializing and communicating needs and desires, and often is accompanied by restricted ...

Research identifies effects of cognitive behaviour therapy on parents of children with autism

August 1, 2017
Parents of children with autism experience a greater impact from their child's therapy than once thought, according to new research out of York University's Faculty of Health.

People with autism are less surprised by the unexpected

July 31, 2017
Adults with autism may overestimate the volatility of the world around them, finds a new UCL study published in Nature Neuroscience.

Late-breaking mutations may play an important role in autism

July 17, 2017
A study of nearly 6,000 families, combining three genetic sequencing technologies, finds that mutations that occur after conception play an important role in autism. A team led by investigators at Boston Children's Hospital ...

Females with autism show greater difficulty with day-to-day tasks than male counterparts

July 14, 2017
Women and girls with autism may face greater challenges with real world planning, organization and other daily living skills, according to a study published in the journal Autism Research.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.