When making decisions, monkeys use different brain areas to weigh value and availability

August 30, 2017, Cell Press
Credit: CC0 Public Domain

There are many calculations at play in our minds when we make a decision, whether we are aware of them or not. Seventeenth-century mathematician Blaise Pascal first introduced the idea of expected value, which is reached by multiplying the value of something (how much it's wanted or needed) with the probability that we might be able to obtain it. Now some very 21st century research is showing for the first time in monkeys which parts of the brain are involved in the two-pronged decision-making process that determines this expected value. The study appears August 30 in Neuron.

"For a long time we thought that representations of value and probability were being evaluated in the same, single part of the ," says Peter Rudebeck, an assistant professor of neuroscience and psychiatry at the Icahn School of Medicine at Mount Sinai and the lead author of the new study. "What's exciting here is that we're showing that it's being done in two different parts of the brain, which are separate both functionally and anatomically."

The researchers focused on two areas of the brain, the (OFC) and the ventrolateral prefrontal cortex (VLPFC). Studies of people who have had their OFCs damaged due to injury or disease have indicated that injuries to that region of the brain resulted in impaired decision-making abilities. "But when we tried to duplicate this effect experimentally in by creating lesions in their OFCs, we didn't see the same result," Rudebeck explains.

Further examination revealed that the difference came from how much of the brain was damaged. "When surgeons remove a tumor from the OFC, they remove not only the gray matter, the cortex of the brain, but will also inadvertently affect the white matter, which carries the connections between different parts of the brain," he says. "We knew the VLPFC sits right next to the OFC, so we decided to look at that as well."

Two sets of experiments were devised: the first looked at how the monkeys weighed probability when making decisions, and the second looked at how they weighed value.

In the first set, monkeys played a sort of slot machine game, where they were shown images on a touch screen and had to determine which image was most likely to get them a reward—a banana-flavored pellet. The researchers periodically changed the probability, but the control monkeys were able to adjust their choices accordingly. Animals with OFC and VLPFC lesions were then given the same task: those with OFC lesions performed the same as the control animals, whereas the monkeys with VLPFC lesions lost the ability to track probability.

In the second set of experiments, the monkeys had a choice of two rewards when they played a game—peanuts or M&Ms. These rewards were hidden under objects that the monkeys had previously learned predicted either of the two rewards. Because monkeys generally like peanuts and M&Ms equally, they turn over objects overlying peanuts and M&Ms at the same rate. But to shift the value toward one treat over the other, in favor of the peanuts, the monkeys were given M&Ms immediately before the experiment. Having already had their fill of M&Ms, the control monkeys favored the objects overlying peanuts, as expected. Those with VLPFC lesions had the same inclination. The monkeys with OFC lesions, however, showed a preference for the objects overlying M&Ms.

"We've known for a long time that these two parts of the brain are highly interconnected," Rudebeck says. "They both send connections to another area of the frontal lobe, the ventromedial (VMPFC). Imaging studies with fMRI suggested that the VMPFC may be where choices ultimately get made."

The investigators tested this in a separate set of experiments, where they induced lesions in that area. "The animals were able to make a decision based on probability or value alone, but when they had to combine the two, they were less able to do that," Rudebeck concludes. "This lines up with what we've seen in humans, because we know that people who have brain damage in that area also have trouble with making decisions."

Explore further: Study finds brain locale of metamemory in macaque monkeys

More information: Specialized representations of value in orbital and ventrolateral prefrontal cortex: desirability versus availability of outcomes," Neuron (2017). DOI: 10.1016/j.neuron.2017.07.042

Related Stories

Study finds brain locale of metamemory in macaque monkeys

January 16, 2017
(Phys.org)—A team of researchers with the University of Tokyo School of Medicine has found strong evidence for the location in the brain of metamemory in macaque monkeys. In their paper published in the journal Science, ...

Scientists find brain area responsible for learning from immediate experience

May 31, 2016
Scientists have confirmed one of the brain areas responsible for rapid updating of information during learning - the sort of information we use to negotiate many changing situations in everyday life.

Scientists demonstrate the existence of 'social neurons'

May 25, 2017
The existence of new "social" neurons has just been demonstrated by scientists from the Institut de neurosciences des systèmes (Aix-Marseille University / INSERM), the Laboratoire de psychologie sociale et cognitive (Université ...

Study validates monkey model of visual perception

August 25, 2015
A new study from The Journal of Neuroscience shows that humans and rhesus monkeys have very similar abilities in recognizing objects "at a glance," validating the use of this animal model in the study of human visual perception. ...

The role of a specific brain region in deciding between conflicting options

November 7, 2014
A type of information processing in the brain known as 'executive control' helps us make decisions when presented with conflicting options. Brain imaging studies of humans have established that specific regions in an area ...

Recommended for you

New technique helps uncover changes in ALS neurons

June 22, 2018
Northwestern Medicine scientists have discovered that some neurons affected by amyotrophic lateral sclerosis (ALS) display hypo-excitability, using a new method to measure electrical activity in cells, according to a study ...

Broken shuttle may interfere with learning in major brain disorders

June 22, 2018
Unable to carry signals based on sights and sounds to the genes that record memories, a broken shuttle protein may hinder learning in patients with intellectual disability, schizophrenia, and autism.

Watching stem cells repair spinal cord in real time

June 22, 2018
Monash University researchers have restored movement and regenerated nerves using stem cells in zebra fish where the spinal cord is severely damaged.

Scientists discover fundamental rule of brain plasticity

June 21, 2018
Our brains are famously flexible, or "plastic," because neurons can do new things by forging new or stronger connections with other neurons. But if some connections strengthen, neuroscientists have reasoned, neurons must ...

Waking up is hard to do: Prefrontal cortex implicated in consciousness

June 21, 2018
Philosophers have pondered the nature of consciousness for thousands of years. In the 21st century, the debate over how the brain gives rise to our everyday experience continues to puzzle scientists. To help, researchers ...

Researchers find mechanism behind choosing alcohol over healthy rewards

June 21, 2018
A new study links molecular changes in the brain to behaviours that are central in addiction, such as choosing a drug over alternative rewards. The researchers have developed a method in which rats learn to get an alcohol ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.