Epigenetic drugs show promise as antivirals

August 15, 2017, American Society for Microbiology

Some epigenetic pharmaceuticals have the potential to be used as broad spectrum antivirals, according to a study reported in a recent issue of the journal mBio. The study demonstrated that histone methyltransferases EZH2/1 inhibitors, which are being used in cancer clinical trials, have activity against a variety of viruses, including herpes simplex virus (HSV).

Many DNA viruses, including HSV, are subject to where productive , persistence, and latency are determined, in part, by the modulation of chromatin associated with viral genomes. For a number of years, research laboratories including that of Thomas Kristie, PhD, a principal investigator in the Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, have focused on studying the epigenetic regulation of HSV. The impacts a significant proportion of the world's population, and primary infection and subsequent recurrent reactivation can result in disease ranging from mild lesions to severe ocular or neurological damage.

"We have long been interested in the regulation of immediate early (IE) which are the first set of viral genes to be expressed upon infection," said Dr. Kristie. "The proteins encoded by these genes are very important regulators, and once expressed, they promote lytic infection as well as reactivation from latency."

EZH2/1 are histone-lysine N-methyltransferase enzymes that are epigenetic repressors that suppress gene transcription via propagation of repressive H3K27me3 enriched chromatin domains. Currently, multiple EZH2/1 inhibitors are being developed and evaluated in . "Some specific cancers are based on "gain of function" mutations in EZH2. Additionally, it has been proposed that in some cancers, these enzymes repress anti-oncogenes and treatment with EZH2/1 inhibitors might result in re-expression of these anti-oncogenes." said Dr. Kristie.

In the new study, researchers evaluated the impact of a series of these EZH2/1 inhibitors on HSV. Given that EZH2/EZH1 has been implicated in repression of herpesvirus gene expression, the researchers expected to see induction of viral gene expression. However, they found instead that the inhibitors resulted in reduced HSV gene expression and lytic infection in vitro and in vivo.

"These inhibitors suppressed viral IE and lytic replication in culture. They also suppressed infection in vivo in a mouse model system and promoted the recruitment of host immune cells to the sites of infection," said Dr. Kristie. Transcriptome analyses revealed that the drugs induced a number of antiviral and stress pathways that could account for the antiviral activity of these compounds. These results were consistent with other studies where treatment of cancer cell lines with these inhibitors enhanced the expression of some interferon-responsive genes including cytokines.

"Previous studies indicated that this complex would repress HSV infection. However, what was unexpected was treatment with EZH2/1 inhibitors enhanced cellular anti-viral activity and this was dominant over the loss of direct repression of the viral genome by this enzyme complex," said Dr. Kristie. The researchers also found that treatment of mouse sensory ganglia that were latently infected with HSV resulted in enhanced immune responses in the ganglia that correlated with reduced viral reactivation from latency.

Additional experiments showed the anti-viral effects of the EZH2/1 inhibitors extended to other DNA viruses, including human Cytomegalovirus and adenovirus-5, and the unrelated Zika RNA virus.

Dr. Kristie speculates that EZH2/EZH1 inhibitors could be used to boost an individual's innate immunity to emerging viruses or drug-resistant viruses. "For emerging viruses for which there aren't any immediate treatments, this may be something that could be used to boost an individual's innate immunity. This could also be a novel way of treating infections by enhancing the infected cell's own ability to fight the virus," said Dr. Kristie. "Many viruses, such as herpesviruses, have mechanisms to circumvent cellular immune responses. What was striking was that these viruses were not able to escape the suppression mediated by these inhibitors."

Explore further: Scientists advance understanding of herpesvirus infection

Related Stories

Scientists advance understanding of herpesvirus infection

April 12, 2017
Herpes simplex virus (HSV) infections last a lifetime. Once a person has been infected, the virus can remain dormant (latent) for years before periodically reactivating to cause recurrent disease. This poorly understood cycle ...

Groundbreaking discovery has potential to improve therapies for cancer and other diseases

December 15, 2016
The Retinoblastoma protein (pRB) has long been studied for its role in cell growth and the prevention of cancer. In a new study by Lawson Health Research Institute, scientists have discovered that pRB plays another, larger ...

Caution needed for drugs in development for most common malignant pediatric brain tumor

March 21, 2017
Researchers led by St. Jude Children's Research Hospital scientists have worked out how a crucial cancer-related protein, a "histone writer" called Ezh2, plays a role in suppressing as well as driving the most aggressive ...

Dendritic cells 'divide and conquer' to elude viral infection while promoting immunity

July 7, 2017
A research team led by Jackson Laboratory (JAX) Professor Karolina Palucka, M.D., Ph.D., in collaboration with a research team at Institut Curie in France led by Dr. Nicolas Manel, have addressed a long-standing puzzle of ...

Glutamine suppresses herpes in mice and guinea pigs in study

June 19, 2017
Glutamine supplements can suppress reactivation of herpes simplex virus (HSV) in mice and guinea pigs, according to findings recently published in the Journal of Clinical Investigation. The research was conducted by scientists ...

Two proteins produced by a single gene interact to keep the genome in check

June 12, 2017
An epigenetic mechanism regulating gene activity has been revealed by a KAUST-led international team of researchers investigating interactions between the human genome and its environment in adult tissues.

Recommended for you

Research finds new mechanism that can cause the spread of deadly infection

April 20, 2018
Scientists at the University of Birmingham have discovered a unique mechanism that drives the spread of a deadly infection.

Selection of a pyrethroid metabolic enzyme CYP9K1 by malaria control activities

April 20, 2018
Researchers from LSTM, with partners from a number of international institutions, have shown the rapid selection of a novel P450 enzyme leading to insecticide resistance in a major malaria vector.

Study predicts 2018 flu vaccine will have 20 percent efficacy

April 19, 2018
A Rice University study predicts that this fall's flu vaccine—a new H3N2 formulation for the first time since 2015—will likely have the same reduced efficacy against the dominant circulating strain of influenza A as the ...

Low-cost anti-hookworm drug boosts female farmers' physical fitness

April 19, 2018
Impoverished female farm workers infected with intestinal parasites known as hookworms saw significant improvements in physical fitness when they were treated with a low-cost deworming drug. The benefits were seen even in ...

Zika presents hot spots in brains of chicken embryos

April 19, 2018
Zika prefers certain "hot spots" in the brains of chicken embryos, offering insight into how brain development is affected by the virus.

Super-superbug clones invade Gulf States

April 18, 2018
A new wave of highly antibiotic resistant superbugs has been found in the Middle East Gulf States, discovered by University of Queensland researchers.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.