Researchers use gold nanoparticles to enhance the accuracy of biomedical tests

August 30, 2017 by Sonia Fernandez, University of California - Santa Barbara
Credit: CC0 Public Domain

Few experiences invoke as much anxiety as a call from your doctor saying "you need to come back for more tests." Your imagination goes wild and suddenly a routine medical screening becomes a minefield of potential life-threatening diseases.

It's highly likely, however, that you have fallen victim to a false positive—a result that, despite the accuracy of the test, erroneously yields an affirmative result that points toward illness. Statistically, there's usually not much cause for alarm. But tell that to the person who has to undergo additional blood draws, invasive tests or even therapies. While the result is false, the psychological toll is real, and so are the billions of dollars spent every year on tests and procedures performed as a result of false positives.

"There are these horror stories," said UC Santa Barbara researcher Tracy Chuong. "Usually they go in for second opinions, get another test and it turns out to be a big scare. But it does cost the healthcare system quite a bit of money."

To increase the accuracy of and reduce the incidence of false positives, Chuong, along with UCSB chemistry and biochemistry professors Martin Moskovits and Galen Stucky and Stanford chemical engineering professor Tom Soh, designed a biomedical assay that eliminates the readout of these faulty results. Not only does the assay provide greater accuracy, it reduces the wait time for results. It is an improvement on the popular enzyme-linked immunosorbent assay (ELISA), which detects concentrations of proteins that correlate with conditions from pregnancy to allergies, to infectious disease.

"We're not trying to be the best assay," said Chuong, referring to tests that can get results out of ever-more miniscule sample amounts. "Instead we looked at how we can make what's already there work better, by reducing erroneous results." Their research is published in the Proceedings of the National Academy of Sciences.

The mechanism of an ELISA basically works like this: Blood or other biological fluid is dropped onto plates with little wells whose surfaces bind antibodies and proteins. A second binder is added to these wells, which are tagged with "reporter molecules" that will activate (usually change color) if a target protein is detected. The test can vary in the number of steps and intermediate steps and their sequences, or in the types of detection molecules or enzymes, depending on the information being sought.

"What we realized was that in the process of doing this assay everything comes down to that one binder and the reporter," Chuong said. If the reporter happens to bind to other surfaces, or other proteins, she said, it can indicate an abnormal concentration of target proteins that correlate with a disease. Other substances in the test sample may also prompt the reporter to activate.

"Then you suddenly have a false positive," she said.

The procedure developed by the UCSB researchers looks more closely at the binding, and in effect labels all the parties involved in that step so that any erroneous activations of the reporter can be removed or disregarded, leaving only the true positives to be assessed.

"That's the unique bit of our assay," Chuong said.

Key to this technology are , infinitesimally tiny bits of gold whose electromagnetic properties enhance the chemical signature of whatever molecules happen to be close by.

"When we have these gold nanoparticles come together there are these interesting little electromagnetic fields that are generated within these gold surfaces when light hits," Chuong said. The chemical signal of the labels next to the binder gets amplified by these nanoparticles, she explained.

"You can see everything within that binding spot," she said, and the signals can be compared from one area of binding to another. Reactions that are not the ones being sought will not have the same signals as the true positives and can be weeded out in the analysis.

The assay—when compared against the performance of the conventional ELISA—has proved to be "up to clinical standards," according to the researchers, with the added ability of removing the false positives, thereby eliminating the need for repeated testing.

Additionally, this assay can cut out several intermediate steps requiring washing and adding more reagents. The gold nanoparticles can make it possible to bind and label all the necessary proteins in about an hour.

"Theoretically a patient can just hang out for an hour and get their results, instead of waiting for the next day," said Chuong.

Further research on this project aims to assess multiple targets.

"Doctors don't rely on just one protein to make a conclusion, they look at a panel of proteins and their abundances to complete the picture," Chuong said. "First, we'd like to show that multiple targets can be assessed, and the next step would be to look at them all at the same time."

Explore further: New diagnostics tool, the Xpert Ultra assay, improves detection of mycobacterium tuberculosis

More information: Tracy T Chuong et al. Dual-reporter SERS-based biomolecular assay with reduced false-positive signals, Proceedings of the National Academy of Sciences (2017). DOI: 10.1073/pnas.1700317114

Related Stories

New diagnostics tool, the Xpert Ultra assay, improves detection of mycobacterium tuberculosis

August 29, 2017
Researchers have demonstrated a new, improved version of the Xpert MTB/RIF assay, a test for Rifampicin-resistance (RIF-R). The Xpert "Ultra" assay overcomes the shortcomings of the current Xpert assay to significantly improve ...

Printable tool enables sensitive diagnostic testing

August 7, 2017
Biomedical engineers at Duke University have created a portable diagnostic tool that can detect telltale markers of disease as accurately as the most sensitive tests on the market, while cutting the wait time for results ...

New tool could lead to earlier diagnosis, better treatment of Parkinson's disease

July 6, 2017
Parkinson's disease is the second most common neurodegenerative disorder in humans, after Alzheimer's disease. It is typically characterized by changes in motor control such as tremors and shaking, but can also include non-motor ...

Recommended for you

Early results from clinical trials not all they're cracked up to be, shows new research

February 21, 2018
When people are suffering from a chronic medical condition, they may place their hope on treatments in clinical trials that show early positive results. However, these results may be grossly exaggerated in more than 1 in ...

Spare parts from small parts: Novel scaffolds to grow muscle

February 20, 2018
Australian biomedical engineers have successfully produced a 3D material that mimics nature to transform cells into muscle.

Clues to obesity's roots found in brain's quality control process

February 20, 2018
Deep in the middle of our heads lies a tiny nub of nerve cells that play a key role in how hungry we feel, how much we eat, and how much weight we gain.

Study looks at how newly discovered gene helps grow blood vessels

February 19, 2018
A new study published today found that a newly discovered gene helps grow blood vessels when it senses inadequate blood flow to tissues.

Scientists produce human intestinal lining that re-creates living tissue inside organ-chip

February 16, 2018
Investigators have demonstrated how cells of a human intestinal lining created outside an individual's body mirror living tissue when placed inside microengineered Intestine-Chips, opening the door to personalized testing ...

Data wave hits health care

February 16, 2018
Technology used by Facebook, Google and Amazon to turn spoken language into text, recognize faces and target advertising could help doctors fight one of the deadliest infections in American hospitals.


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.