Protein turnover could be clue to living longer

August 30, 2017, Salk Institute
Overactive protein synthesis found in premature aging disease may also play role in normal aging. Nucleoli in the cell nucleus, stained bright magenta and cyan against the purple backdrop of the nucleus, are enlarged in the progeria cell (right) compared to the normal cell (left). Credit: Salk Institute

It may seem paradoxical, but studying what goes wrong in rare diseases can provide useful insights into normal health. Researchers probing the premature aging disorder Hutchinson-Gilford progeria have uncovered an errant protein process in the disease that could help healthy people as well as progeria sufferers live longer.

Scientists at the Salk Institute found that synthesis is overactive in people with progeria. The work, described in Nature Communications on August 30, 2017, adds to a growing body of evidence that reducing protein synthesis can extend lifespan—and thus may offer a useful therapeutic target to counter both premature and normal aging.

"The production of proteins is an extremely energy-intensive process forcells ," says Martin Hetzer, vice president and chief science officer ofthe Salk Institute and senior author of the paper. "When a cell devotesvaluable resources to producing protein, other important functions may beneglected. Our work suggests that one driver of both abnormal and normalaging could be accelerated protein turnover."

Hutchinson-Gilford progeria is a very rare genetic disease causing people to age 8 to 10 times faster than the rest of us and leading to an early death. The rare mutation occurs in one of the structural proteins in the cell nucleus, lamin A, but it has been unclear how a single defective protein in the nucleus causes the myriad rapid-aging features seen in the disease.

Initially, Salk Staff Scientist Abigail Buchwalter, first author of the paper, was interested in whether the mutation was making the lamin A protein less stable and shorter lived. After measuring protein turnover in cultured from skin biopsies of both progeria sufferers and healthy people, she found that it wasn't just lamin A that was affected in the disease.

Salk scientists explain why protein turnover could be usefulmarker for aging. Credit: Salk Institute

"We analyzed all the proteins of the nucleus and instead of seeing rapid turnover in just mutant lamin A and maybe a few proteins associated with it, we saw a really broad shift in overall protein stability in the cells," says Buchwalter. "This indicated a change in protein metabolism that we hadn't expected."

Along with the rapid turnover of proteins, the team found that the nucleolus, which makes protein-assembling structures called ribosomes, was enlarged in the prematurely aging cells compared to healthy cells.

Even more intriguing, the team found that nucleolus size increased with age in the healthy cells, suggesting that the size of the nucleolus could not only be a useful biomarker of aging, but potentially a target of therapies to counter both premature and normal aging.

The work supports other research that appears in the same issue showingthat decreasing extends lifespan in roundworms and mice.The Hetzer lab plans to continue studying how nucleolus size may serve asa reliable biomarker for aging.

"We always assume that aging is a linear process, but we don't know that for sure," says Hetzer, who also holds the Jesse and Caryl Philips Chair. "A biomarker such as this that tracks aging would be very useful, and could open up new ways of studying and understanding aging in humans."

Explore further: Artificial blood vessels mimic rare accelerated aging disease

More information: Abigail Buchwalter et al. Nucleolar expansion and elevated protein translation in premature aging, Nature Communications (2017). DOI: 10.1038/s41467-017-00322-z , www.nature.com/articles/s41467-017-00322-z

Related Stories

Artificial blood vessels mimic rare accelerated aging disease

August 15, 2017
Biomedical engineers have grown miniature human blood vessels that exhibit many of the symptoms and drug reactions associated with Hutchinson-Gilford Progeria Syndrome—an extremely rare genetic disease that causes symptoms ...

Researchers develop technology to make aged cells younger

July 31, 2017
Aging. We all face it. Nobody's immune and we've long tried to reverse it, stop it or just even slow it down. While advances have been made, true age-reversal at a cellular level remains difficult to achieve. By taking a ...

Researchers describe mechanism behind progeria

October 6, 2015
Progeria, a premature aging disease, is the research focus of Roland Foisner's team at the Max F. Perutz Laboratories of the University of Vienna and the Medical University of Vienna. Children suffering from progeria die ...

Possible new drug for children with progeria

June 30, 2011
(Medical Xpress) -- A new study published in the journal Science Translational Medicine shows that rapamycin and its derivative everolimus, which is currently used to treat cancer and transplant rejections, may work to reverse ...

Scientists create new genetic model of premature aging diseases

April 29, 2011
Working with a group of national and international researchers, scientists from the Florida campus of The Scripps Research Institute have developed a new genetic model of premature aging disorders that could shed light on ...

Recommended for you

Scientists produce human intestinal lining that re-creates living tissue inside organ-chip

February 16, 2018
Investigators have demonstrated how cells of a human intestinal lining created outside an individual's body mirror living tissue when placed inside microengineered Intestine-Chips, opening the door to personalized testing ...

Researcher explains how statistics, neuroscience improve anesthesiology

February 16, 2018
It's intuitive that anesthesia operates in the brain, but the standard protocol among anesthesiologists when monitoring and dosing patients during surgery is to rely on indirect signs of arousal like movement, and changes ...

Team reports progress in pursuit of sickle cell cure

February 16, 2018
Scientists have successfully used gene editing to repair 20 to 40 percent of stem and progenitor cells taken from the peripheral blood of patients with sickle cell disease, according to Rice University bioengineer Gang Bao.

Data wave hits health care

February 16, 2018
Technology used by Facebook, Google and Amazon to turn spoken language into text, recognize faces and target advertising could help doctors fight one of the deadliest infections in American hospitals.

Appetite-controlling molecule could prevent 'rebound' weight gain after dieting

February 15, 2018
Scientists have revealed how mice control their appetite when under stress such as cold temperatures and starvation, according to a new study by Monash University and St Vincent's Institute in Melbourne. The results shed ...

First study of radiation exposure in human gut Organ Chip device offers hope for better radioprotective drugs

February 14, 2018
Chernobyl. Three Mile Island. Fukushima. Accidents at nuclear power plants can potentially cause massive destruction and expose workers and civilians to dangerous levels of radiation that lead to cancerous genetic mutations ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.