Retaining one normal BRCA gene in breast, ovarian cancers influences patient survival

August 22, 2017, Perelman School of Medicine at the University of Pennsylvania
cancer
Killer T cells surround a cancer cell. Credit: NIH

Determining which cancer patients are likely to be resistant to initial treatment is a major research effort of oncologists and laboratory scientists. Now, ascertaining who might fall into that category may become a little easier for physicians taking care of people with BRCA1/2 mutations. Researchers in the Perelman School of Medicine at the University of Pennsylvania found a relationship between the genetics of tumors with germline BRCA1/2 mutations and whether the tumor retains the normal copy of the BRCA1/2 gene, and risk for primary resistance to a common chemotherapy that works by destroying cancer cells' DNA. The team published their study this week in Nature Communications.

Researchers estimate that 5 percent of breast cancers and 20 percent of ovarian cancers are attributable to germline mutations in BRCA1 and BRCA2, the focus of the current study. Overall, 252,710 people will be diagnosed with breast this year and 40,610 will die of the disease, according to the National Cancer Institute. For ovarian cancer, NCI projects 22,440 new cases and 14,080 deaths.

There are many reasons may be resistant to treatment—the immune system, the complex landscape of a tumor, or a patient's own genes can all play a role. Without explicitly looking for it, the Penn team found another mechanism of resistance to a standard treatment for patients with BRCA-associated cancers. "Our primary question was not aimed at evaluating resistance to therapy, but we did end up there," said senior author Katherine Nathanson, MD, deputy director of the Abramson Cancer Center, and director of Genetics at the Basser Center for BRCA.

Her group evaluated the genetic profiles of 160 breast and associated with in BRCA1 and BRCA2, in the largest study of these tumors to date. They were interested in determining what types of secondary, additional changes occur in primary BRCA1/2 germline mutation-associated cancers that might act in concert with mutant BRCA1 and BRCA2 to drive the cancers.

The team evaluated how frequently the non-mutated version of the gene lost its function in concert with the original BRCA1/2 germline mutation-associated cancers. In oncology terms, this double-hit status is called "loss of heterozygosity," or LOH, to signify that both versions (one inherited from mother, one from father) of the normal BRCA gene have been hobbled.

Historically, it had been thought that all tumors associated with germline BRCA1/2 mutations lose the second version of the gene, or LOH. The investigators were surprised to find that was not the case in a surprisingly large percentage of patients. In addition, they found that other genetic and clinical features of patients whose tumors did not undergo LOH (LOH-negative) were significantly different from those that did undergo LOH (LOH-positive).

Notably, they evaluated the overall survival of patients with ovarian tumors with and without loss of heterozygosity. LOH-negative status was associated with worse overall survival in ovarian cancer patients treated with platinum chemotherapy, with a median of 39 months, compared to 71 months in the LOH-positive group who received the same treatment.

The researchers believe the patients with LOH-negative tumors (those with one working copy of BRCA1 or BRCA2 and the other copy carrying the germline mutation) had tumor cells that could still repair the chemotherapy-induced DNA damage in order to survive. In contrast, the investigators surmise that the LOH-positive group (with both gene copies disabled) responded better to the same therapy because their cells died more readily.

"Identifying the LOH status of BRCA1/2 carriers may be useful to predict who might be at risk for primary resistance to DNA-damaging agents such as platinum, which has important implications for treatment of patients with these mutations," said the study's first author Kara N. Maxwell, MD, PhD, an instructor of Hematology/Oncology. "We only need to determine the LOH at a specific gene's location, which is more cost effective than sequencing a patient's whole genome, for example, and compatible with standard testing."

By looking at a person's individual genetics and type of cancer, the Penn team hopes to be able to better tailor care soon after an initial diagnosis to improve survival. Nathanson surmises that knowing a person's LOH status could guide treatment decisions. She suggests that certain drugs already in today's cancer treatment arsenal will likely work for patients who are at risk for resistance due to their LOH genetics; however, it's a matter of choosing the right one.

Explore further: Searching for the 'signature' causes of BRCAness in breast cancer

Related Stories

Searching for the 'signature' causes of BRCAness in breast cancer

August 21, 2017
Breast cancer cells with defects in the DNA damage repair-genes BRCA1 and BRCA2 have a mutational signature (a pattern of base swaps—e.g., Ts for Gs, Cs for As—throughout a genome) known in cancer genomics as "Signature ...

Genetic predisposition to breast cancer due to non-brca mutations in ashkenazi Jewish women

July 20, 2017
Genetic mutations in BRCA1 and BRCA2 increase the risk of breast and ovarian cancer in Ashkenazi Jewish women. A new article published by JAMA Oncology examines the likelihood of carrying another cancer-predisposing mutation ...

BRCA1 mutations in breast and ovarian cancer can predict treatment resistance

July 25, 2016
Mutations in the BRCA1 gene are one of the most common risk factors for breast and ovarian cancers. Although tumors that harbor BRCA1 mutations initially respond well to cancer treatments, many tumors eventually become less ...

Researchers discover BRCA1 gene is key for blood forming stem cells

January 24, 2017
Researchers at from the Harold C. Simmons Comprehensive Cancer Center have found that the BRCA1 gene is required for the survival of blood forming stem cells, which could explain why patients with BRCA1 mutations do not have ...

ADAMTS family of genes may be the next 'thing' in ovarian cancer treatment

June 11, 2015
There is the Addams Family. And then there is the ADAMTS family. While one is mindless entertainment, the latter may prove to be a new genetic avenue for designing ovarian cancer treatment.

Patients with BRCA1 mutations, but not BRCA2 mutations, had poorer prognosis compared with noncarriers

April 9, 2013
Patients with breast cancer who had a BRCA1 mutation had significantly worse overall and recurrence-free survival rates compared with patients without BRCA mutations, but no evidence for a difference in survival was found ...

Recommended for you

Scientists discover chemical which can kill glioblastoma cells

August 15, 2018
Aggressive brain tumour cells taken from patients self-destructed after being exposed to a chemical in laboratory tests, researchers have shown.

Three scientists share $500,000 prize for work on cancer therapy

August 15, 2018
Tumors once considered untreatable have disappeared and people previously given months to live are surviving for decades thanks to new therapies emerging from the work of three scientists chosen to receive a $500,000 medical ...

PARP inhibitor improves progression-free survival in patients with advanced breast cancers

August 15, 2018
In a randomized, Phase III trial led by researchers at The University of Texas MD Anderson Cancer Center, the PARP inhibitor talazoparib extended progression-free survival (PFS) and improved quality-of-life measures over ...

New clues into how 'trash bag of the cell' traps and seals off waste

August 15, 2018
The mechanics behind how an important process within the cell traps material before recycling it has puzzled scientists for years. But Penn State researchers have gained new insight into how this process seals off waste, ...

RUNX proteins act as regulators in DNA repair, study finds

August 15, 2018
A study by researchers from the Cancer Science Institute of Singapore (CSI Singapore) at the National University of Singapore has revealed that RUNX proteins are integral to efficient DNA repair via the Fanconi Anemia (FA) ...

Chemicals found in vegetables prevent colon cancer in mice

August 14, 2018
Chemicals produced by vegetables such as kale, cabbage and broccoli could help to maintain a healthy gut and prevent colon cancer, a new study from the Francis Crick Institute shows.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.