Different sensory pathways engaged in feeling and responding to external temperature

August 3, 2017, Nagoya University
Environmental warmth is sensed by thermoreceptors in the skin and the thermosensory information is sent to the spinal cord. When the information is relayed to the cerebral cortex through the thalamus, the hot temperature is perceived. However, this “feeling” of temperature does not lead to behaviors to avoid the hot environment. Another pathway from the spinal cord to the lateral parabrachial nucleus mediates the generation of discomfort to drive cold-seeking (or heat-avoidance) behaviors. This pathway also leads to the autonomic heat-loss responses, such as increases in skin blood flow and sweating in humans. Credit: Kazuhiro Nakamura

To maintain the body at an appropriate temperature despite changes in the environment, there are a number of physiological and behavioral responses that can be adopted, such as shivering or moving into or out of direct sunlight. Although these responses are well understood, there is still a lack of understanding of the nerve and brain pathways that control them.

Researchers at the Department of Integrative Physiology at Nagoya University Graduate School of Medicine have boosted our knowledge of sensing external and responding to it to maintain body temperature, known as "thermoregulation," by disabling parts of the brain in rats and then observing the animals' choices of a comfortable environmental temperature. The new findings, recently published in Scientific Reports, could also help us understand conditions in which these regulatory systems go awry, such as heatstroke.

The team built on earlier studies that suggested the involvement of two brain/neural sensory pathways in thermoregulation, namely, the spinothalamocortical (STC) and the lateral parabrachial nucleus-hypothalamus preoptic area (LPB-POA) pathway. They injected toxic substances into parts of the brain involved in each of these pathways to disable them, and then investigated how this influenced the "feeling" of temperature changes and responses to such changes.

"We tested the thermal responses of rats using an arrangement with two floor plates of different temperatures," Takaki Yahiro says. "In control conditions, the rats preferred to stay on the 28°C plate, rather than the 15°C or 38°C one." He adds, "When we injected a toxin into part of the brain involved in the STC pathway, surprisingly, we found that the rats still showed this temperature preference, even though they had lost their ability to 'feel' temperature in the primary somatosensory cortex."

However, when part of the LPB pathway was instead disabled by injecting another toxin, the no longer tried to avoid the hot and cold plates. Measuring their body temperature also revealed that their brains had warmed up to a hyperthermic state when they had been on a warm plate, showing that the body's ability to regulate its core temperature had been damaged.

"These findings show the different functions of these two sensory pathways in 'feeling' external and in actually responding to these changes behaviorally," Kazuhiro Nakamura says. "We can now pursue a much better understanding of the circuits that control and how these help the temperature of the body to be maintained."

The team hopes to build on this work by obtaining detailed findings on the specific groups of neurons involved in the pathways and on the involvement of emotion-related parts of the in thermoregulation and the behavior of seeking thermal comfort.

Explore further: Long-sought 'warm-sensitive' brain cells identified in new study

More information: Takaki Yahiro et al. The lateral parabrachial nucleus, but not the thalamus, mediates thermosensory pathways for behavioural thermoregulation, Scientific Reports (2017). DOI: 10.1038/s41598-017-05327-8

Related Stories

Long-sought 'warm-sensitive' brain cells identified in new study

September 9, 2016
A new UC San Francisco study challenges the most influential textbook explanation of how the mammalian brain detects when the body is becoming too warm, and how it then orchestrates the myriad responses that animals, including ...

Scientists discover combined sensory map for heat, humidity in fly brain

July 20, 2017
Northwestern University neuroscientists now can visualize how fruit flies sense and process humidity and temperature together through a "sensory map" within their brains, according to new research.

A two-way street between temperature sensing, brain activity

March 22, 2016
Nagoya University researchers reveal how perceived external information is converted into a succession of neural activities that are crucial for appropriate navigation in an environment

Amphetamine may slow rise of body temperature and mask fatigue to enhance endurance, study finds

November 29, 2016
Amphetamine may slow down the rise of temperature in the body and mask fatigue, which could allow athletes to run significantly longer but result in potentially dangerous overheating of muscles, according to a study.

Recommended for you

Neurons can carry more than one signal at a time

July 18, 2018
Back in the early days of telecommunications, engineers devised a clever way to send multiple telephone calls through a single wire at the same time. Called time-division multiplexing, this technique rapidly switches between ...

Researchers solve mystery of how ALL enters the central nervous system

July 18, 2018
A deadly feature of acute lymphoblastic leukemia (ALL) is its invasion of the central nervous system.

Pregnancy history may be tied to Alzheimer's disease

July 18, 2018
A woman's history of pregnancy may affect her risk of Alzheimer's disease decades later, according to a study published in the July 18, 2018, online issue of Neurology, the medical journal of the American Academy of Neurology. ...

Forty percent of people have a fictional first memory, says study

July 17, 2018
Researchers have conducted one of the largest surveys of people's first memories, finding that nearly 40 per cent of people had a first memory which is fictional.

Protein found to be key component in irregularly excited brain cells

July 17, 2018
In a new study in mice, researchers have identified a key protein involved in the irregular brain cell activity seen in autism spectrum disorders and epilepsy. The protein, p53, is well-known in cancer biology as a tumor ...

New drug target for remyelination in MS is identified

July 17, 2018
Remyelination, the spontaneous regeneration of the fatty insulator in the brain that keeps neurons communicating, has long been seen as crucial to the next big advance in treating multiple sclerosis (MS). However, a lack ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.