Systems analysis points to links between Toxoplasma infection and common brain diseases

September 13, 2017
Toxoplasma gondii. Credit: Wikipedia

More than 2 billion people - nearly one out of every three humans on earth, including about 60 million people in the United States - have a lifelong infection with the brain-dwelling parasite Toxoplasma gondii.

In the September 13, 2017, issue of Scientific Reports, 32 researchers from 16 institutions describe efforts to learn how infection with this parasite may alter, and in some cases amplify, several brain disorders, including epilepsy, Alzheimer's and Parkinson's diseases as well as some cancers.

When a woman gets infected with T. gondii during pregnancy and passes the parasite on to her unborn child, the consequences can be profound, including devastating damage to the brain, nervous system and eyes.

There is growing evidence, however, that acquiring this infection later in life may be far from harmless. So the researchers began looking for connections between this chronic but seemingly dormant infection and its potential to alter the course of common neurologic disorders.

"We wanted to understand how this parasite, which lives in the brain, might contribute to and shed light on pathogenesis of other, brain diseases," said Rima McLeod, MD, professor of ophthalmology & visual science and pediatrics and medical director of the Toxoplasmosis Center at the University of Chicago.

"We suspect it involves multiple factors," she said. "At the core is alignment of characteristics of the parasite itself, the genes it expresses in the infected brain, susceptibility genes that could limit the host's ability to prevent infection, and genes that control susceptibility to other diseases present in the . Other factors may include pregnancy, stress, additional infections, and a deficient microbiome. We hypothesized that when there is confluence of these factors, disease may occur."

For more than a decade, researchers have noted subtle behavior manipulations associated with a latent T. gondii infection. Rats and mice that harbor this parasite, for example, lose their aversion to the smell of cat urine. This is perilous for a rodent, making it easier for cats to catch and eat them. But it benefits cats, who gain a meal, as well as the parasites, who gain a new host, who will distribute them widely into the environment. An acutely infected cat can excrete up to 500 million oocysts in a few weeks' time. Even one oocyst, which can remain in soil or water for up to a year, is infectious.

A more recent study found a similar connection involving primates. Infected chimpanzees lose their aversion to the scent of urine of their natural predator, leopards.

The research team decided to search for similar effects in people. They focused on what they call the human "infectome" - plausible links between the parasite's secreted proteins, expressed human microRNAs, the neural chemistry of the human host, and the multiple pathways that are perturbed by host-parasite interactions.

Using data collected from the National Collaborative Chicago-Based Congenital Toxoplasmosis Study, which has diagnosed, treated and followed 246 congenitally infected persons and their families since 1981, they performed a "comprehensive systems analysis," looking at a range of parasite-generated biomarkers and assessing their probable impact.

Working with the J Craig Venter Institute and the Institute of Systems Biology Scientists, they looked at the effect of infections of primary neuronal stem cells from the in tissue culture, focusing on gene expression and proteins perturbed. Part of the team, including Huan Ngo from Northwestern University, Hernan Lorenzi at the J Craig Venter Institute, Kai Wang and Taek-Kyun Kim at the Institute for Systems Biology and McLeod, integrated host genetics, proteomics, transcriptomics and circulating microRNA datasets to build a model of these effects on the human brain.

Using what they called a "reconstruction and deconvolution," approach, the researchers identified perturbed pathways associated with as well as connections between toxoplasmosis, human brain disorders and some cancers.

They also found that:

  • Small regulatory biomarkers - bits of microRNA or proteins found in children with severe toxoplasmosis - matched those found in patients with neurodegenerative diseases like Alzheimer's or Parkinson's disease.
  • The parasite was able to manipulate 12 human olfactory receptors in ways that mimicked the cat-mouse or the chimp-leopard exchange.
  • Evidence that T. gondii could increase the risk of epilepsy, "possibly by altering GABAergic signaling."
  • T. gondii infection was associated with a network of 1,178 human genes, many of which are modified in various cancers.

"Our results provide insights into mechanisms whereby this parasite could cause these associated diseases under some circumstances," the authors wrote. "This work provides a systems roadmap to design medicines and vaccines to repair and prevent neuropathological effects of T. gondii on the human brain."

"This study is a paradigm shifter," said co-author Dennis Steinler, PhD, director of the Neuroscience and Aging Lab at the Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University. "We now have to insert infectious disease into the equation of neurodegenerative diseases, epilepsy and neural cancers."

"At the same time," he added, "we have to translate aspects of this study into preventive treatments that include everything from drugs to diet to life style, in order to delay onset and progression."

Explore further: Team describes step-by-step progress in battling toxoplasmosis

More information: Huân M. Ngô et al, Toxoplasma Modulates Signature Pathways of Human Epilepsy, Neurodegeneration & Cancer, Scientific Reports (2017). DOI: 10.1038/s41598-017-10675-6

Related Stories

Team describes step-by-step progress in battling toxoplasmosis

July 15, 2016
In the July 14 edition of Scientific Reports, 39 researchers from 14 leading institutions in the United States, United Kingdom and France suggest novel approaches that could hasten the development of better medications for ...

Brain parasite directly alters brain chemistry

November 4, 2011
A research group from the University of Leeds has shown that infection by the brain parasite Toxoplasma gondii, found in 10-20 per cent of the UK's population, directly affects the production of dopamine, a key chemical messenger ...

Scientists find Huntington's disease mice respond differently to common infection

September 19, 2016
Casual conversation three years ago between University of Wyoming veterinary sciences and molecular biology researchers resulted in findings that show for the first time mice engineered to have the human genetic disorder ...

Turning a toxoplasma protein into a tool against infection

May 10, 2017
Toxoplasmosis is a parasitic disease that most severely affects people with a weakened immune system. Caused by the parasite Toxoplasma gondii, it spreads due to consumption of undercooked meat and exposure to cat faeces. ...

Recommended for you

Two Group A Streptococcus genes linked to 'flesh-eating' bacterial infections

September 22, 2017
Group A Streptococcus bacteria cause a variety of illnesses that range from mild nuisances like strep throat to life-threatening conditions including pneumonia, toxic shock syndrome and the flesh-eating disease formally known ...

Ecosystem approach makes urinary tract infection more treatable

September 22, 2017
The biological term 'ecosystem' is not usually associated with urinary tract infections, but this should change according to Wageningen scientists.

Residents: Frontline defenders against antibiotic resistance?

September 22, 2017
Antibiotic resistance continues to grow around the world, with sometimes disastrous results. Some strains of bacteria no longer respond to any currently available antibiotic, making death by infections that were once easily ...

Investigators may unlock mystery of how staph cells dodge the body's immune system

September 21, 2017
For years, medical investigators have tried and failed to develop vaccines for a type of staph bacteria associated with the deadly superbug MRSA. But a new study by Cedars-Sinai investigators shows how staph cells evade the ...

Superbug's spread to Vietnam threatens malaria control

September 21, 2017
A highly drug resistant malaria 'superbug' from western Cambodia is now present in southern Vietnam, leading to alarming failure rates for dihydroartemisinin (DHA)-piperaquine—Vietnam's national first-line malaria treatment, ...

Individualized diets for irritable bowel syndrome better than placebo

September 21, 2017
Patients with irritable bowel syndrome who follow individualized diets based on food sensitivity testing experience fewer symptoms, say Yale researchers. Their study is among the first to provide scientific evidence for this ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.