Study identifies blood vessel as a therapeutic target for diabetes

September 14, 2017, Yale University
Restricted expression of apelin receptor (green) to the endothelial cells (red) in adipose tissue. Credit: Yale University

Blood vessels have an often overlooked role of regulating the transfer of nutrients from the blood to organs in the body. In a new Yale-led study, researchers have identified a role of a secreted protein, apelin, in regulating the transfer of fatty acids across the blood vessels. The study offers insights into a potential target for future therapies for type 2 diabetes.

Published in Science Translational Medicine, the study was led by cardiologist Dr. Hyung J. Chun, associate professor of internal medicine.

Researchers have long known that apelin has positive effects on the body's use of glucose and on insulin response. Yet the underlying biological mechanism was not well understood. Through experiments with mice and human samples, the research team discovered that the receptor for apelin is predominantly expressed in the , or the inner lining of all the in the body. In mice lacking the receptor specifically in the endothelial cells, the researchers observed an excess of fatty acid accumulation in tissues, and complete loss of the beneficial metabolic effects of apelin. The mice also became insulin resistant, a condition that can result in increased blood sugar and type 2 diabetes.

The findings reveal how apelin and its receptor regulate the glucose-insulin balance. They also point to this pathway as a potential target for treatments to regulate metabolism and treat type 2 diabetes. Importantly, said the researchers, given previous studies describing the protective effects of apelin on atherosclerosis (clogged arteries), future development of this pathway as a therapy for diabetes may offer the added benefit of reducing the cardiovascular complications of this devastating disease.

Explore further: Protein influence on early heart development could lead to better regenerative therapies

More information: Cheol Hwangbo et al. Endothelial APLNR regulates tissue fatty acid uptake and is essential for apelin's glucose-lowering effects, Science Translational Medicine (2017). DOI: 10.1126/scitranslmed.aad4000

Related Stories

Protein influence on early heart development could lead to better regenerative therapies

April 5, 2017
Stem cell therapies could one day help repair heart tissue in people with cardiovascular disease. But before doctors feel confident enough to transplant these potent cells into patients, they need to better understand how ...

Discovery of novel mechanism for blood vessel formation suggests new vascular therapies

August 25, 2015
An international team of researchers, including scientists at A*STAR's Institute of Medical Biology (IMB), has shed new light on how the circulatory system and blood vessels are formed in the embryo. The discovery lays the ...

Recommended for you

Possible link found between diabetes and common white pigment

June 20, 2018
In a pilot study by a team of researchers at The University of Texas at Austin, crystalline particles of titanium dioxide—the most common white pigment in everyday products ranging from paint to candies—were found in ...

Diagnosing diabetes from a single blood sample

June 18, 2018
Diagnosing type 2 diabetes in clinical practice may require only a single blood sample, according to a study led by researchers at Johns Hopkins Bloomberg School of Public Health.

Lentils significantly reduce blood glucose levels, study reveals

June 13, 2018
Replacing potatoes or rice with pulses can lower your blood glucose levels by more than 20 per cent, according to a first-ever University of Guelph study.

Is there a link between diabetes and Parkinson's disease?

June 13, 2018
People with type 2 diabetes may have an increased risk of having a diagnosis of Parkinson's disease later in life, according to a large study published in the June 13, 2018, online issue of Neurology, the medical journal ...

Double-checking diabetes medications may reduce re-hospitalizations

June 11, 2018
Clinicians may take upwards of 15 minutes to double-check a patient's medication list in an electronic health record system, but according to a new study, this reconciliation process may be well worth the time for diabetes ...

How a gene linked to obesity could provide new insights into diabetes

June 8, 2018
A gene previously linked with obesity has been found to affect how the body processes insulin, with potential implications for some forms of diabetes.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.