Study identifies blood vessel as a therapeutic target for diabetes

September 14, 2017
Restricted expression of apelin receptor (green) to the endothelial cells (red) in adipose tissue. Credit: Yale University

Blood vessels have an often overlooked role of regulating the transfer of nutrients from the blood to organs in the body. In a new Yale-led study, researchers have identified a role of a secreted protein, apelin, in regulating the transfer of fatty acids across the blood vessels. The study offers insights into a potential target for future therapies for type 2 diabetes.

Published in Science Translational Medicine, the study was led by cardiologist Dr. Hyung J. Chun, associate professor of internal medicine.

Researchers have long known that apelin has positive effects on the body's use of glucose and on insulin response. Yet the underlying biological mechanism was not well understood. Through experiments with mice and human samples, the research team discovered that the receptor for apelin is predominantly expressed in the , or the inner lining of all the in the body. In mice lacking the receptor specifically in the endothelial cells, the researchers observed an excess of fatty acid accumulation in tissues, and complete loss of the beneficial metabolic effects of apelin. The mice also became insulin resistant, a condition that can result in increased blood sugar and type 2 diabetes.

The findings reveal how apelin and its receptor regulate the glucose-insulin balance. They also point to this pathway as a potential target for treatments to regulate metabolism and treat type 2 diabetes. Importantly, said the researchers, given previous studies describing the protective effects of apelin on atherosclerosis (clogged arteries), future development of this pathway as a therapy for diabetes may offer the added benefit of reducing the cardiovascular complications of this devastating disease.

Explore further: Protein influence on early heart development could lead to better regenerative therapies

More information: Cheol Hwangbo et al. Endothelial APLNR regulates tissue fatty acid uptake and is essential for apelin's glucose-lowering effects, Science Translational Medicine (2017). DOI: 10.1126/scitranslmed.aad4000

Related Stories

Protein influence on early heart development could lead to better regenerative therapies

April 5, 2017
Stem cell therapies could one day help repair heart tissue in people with cardiovascular disease. But before doctors feel confident enough to transplant these potent cells into patients, they need to better understand how ...

Discovery of novel mechanism for blood vessel formation suggests new vascular therapies

August 25, 2015
An international team of researchers, including scientists at A*STAR's Institute of Medical Biology (IMB), has shed new light on how the circulatory system and blood vessels are formed in the embryo. The discovery lays the ...

Recommended for you

Pancreatic islets study may spur diabetes treatment advances

September 22, 2017
Investigators in the Vanderbilt Diabetes Research and Training Center (VDRTC) and collaborators at Stanford University have discovered new insights into the molecular mechanisms of cell proliferation in juvenile human pancreatic ...

Finding a natural defense against clogged arteries

September 20, 2017
In type 2 diabetes, chronic inflammation drives cardiovascular disease, the leading cause of death among people with the condition. Researchers at Joslin Diabetes Center now have identified an unexpected natural protective ...

Study identifies blood vessel as a therapeutic target for diabetes

September 14, 2017
Blood vessels have an often overlooked role of regulating the transfer of nutrients from the blood to organs in the body. In a new Yale-led study, researchers have identified a role of a secreted protein, apelin, in regulating ...

Drug for type 2 diabetes provides significant benefits to type 1 diabetic patients

September 14, 2017
A majority of patients with Type 1 diabetes who were treated with dapagliflozin, a Type 2 diabetes medicine, had a significant decline in their blood sugar levels, according to a new study published in The Lancet Diabetes ...

Could swine flu be linked to type 1 diabetes?

September 14, 2017
(HealthDay)—Young people who've been infected with the H1N1 swine flu virus may be at increased risk for type 1 diabetes, a new study suggests.

Epigenetic 'fingerprint' identifies diabetes risk

September 14, 2017
Deakin researchers have identified an epigenetic marker that predicts risk of type 2 diabetes in women with gestational diabetes.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.