Interpreting brainwaves to give amputees a hand

September 13, 2017 by Deborah Minors

Biomedical engineers at Wits are researching how brainwaves can be used to control a robotic prosthetic hand.

Such a brain computer interface (BCI) will enable amputees and people with motor impairments to regain some hand mobility.

BCIs can use electroencephalograms (EEGs - brainwaves - to interpret human intentions from electrical signals in the brain and use these to control an external device such as a hand, computer, or speech synthesizer.

The prosthetic robotic hand relies on EEGs extracted via electrodes on the skull, or electromyography (EMG) obtained from electrodes recording muscle signals, for information. A BCI will interpret these signals and translate them to instruct the movements of the artificial hand.

"I envisage a BCI capable of controlling a robotic prosthetic hand that will enable people with motor disabilities to write, hold a glass or shake hands," says Abdul-Khaaliq Mohamed, Lecturer and PhD candidate in the School of Electrical and Information Engineering at Wits.

Mohamed coordinates a research group of six students studying different aspects of potentially controlling a robotic hand. Most BCI experiments to date have centered on basic hand movements such as finger taps, button presses or simple finger grasps.

Credit: Wits University

Mohamed's research group focuses uniquely on a combination of hand movements including wrist extension, wrist flexion, finger flexion, finger extension and the tripod pinch.

"In South Africa, stroke victims may benefit significantly from this technology," says Mohamed. "Stroke afflicts an estimated 132 000 South Africans per year."

Currently, a prosthetic hand costs around US$100 000 (about R1,35 million), an investment out of reach for most South Africans.

Thumbs-up for this research that will use 3-D-printing to create a prosthetic for US$78 (R1 053), thereby increasing access to healthcare for many.

Explore further: Prosthetic arm technology that detects spinal nerve signals developed

Related Stories

Prosthetic arm technology that detects spinal nerve signals developed

February 6, 2017
Scientists have developed sensor technology for a robotic prosthetic arm that detects signals from nerves in the spinal cord.

US military develops prosthetic hand that can 'feel'

September 14, 2015
Researchers fitted a man who has been paralyzed for more than a decade with an experimental prosthetic hand that lets him "feel" sensations, the US military's futuristic development department said.

Sense of touch reproduced through prosthetic hand

May 10, 2013
In a study recently published in IEEE Transactions on Neural Systems and Rehabilitation Engineering, neurobiologists at the University of Chicago show how an organism can sense a tactile stimulus, in real time, through an ...

Recommended for you

Investigating patterns of degeneration in Alzheimer's disease

November 17, 2017
Alzheimer's disease (AD) is known to cause memory loss and cognitive decline, but other functions of the brain can remain intact. The reasons cells in some brain regions degenerate while others are protected is largely unknown. ...

Study may point to new treatment approach for ASD

November 17, 2017
Using sophisticated genome mining and gene manipulation techniques, researchers at Vanderbilt University Medical Center (VUMC) have solved a mystery that could lead to a new treatment approach for autism spectrum disorder ...

Paraplegic rats walk and regain feeling after stem cell treatment

November 16, 2017
Engineered tissue containing human stem cells has allowed paraplegic rats to walk independently and regain sensory perception. The implanted rats also show some degree of healing in their spinal cords. The research, published ...

Brain implant tested in human patients found to improve memory recall

November 15, 2017
(Medical Xpress)—A team of researchers with the University of Southern California and the Wake Forest School of Medicine has conducted experiments involving implanting electrodes into the brains of human volunteers to see ...

Researchers identify potential mediator for social memory formation

November 15, 2017
Research by a group of scientists at the Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore (NUS Medicine) have discovered that a tiny brain region plays a critical role in the formation ...

Improving clinical trials with machine learning

November 15, 2017
Machine learning could improve our ability to determine whether a new drug works in the brain, potentially enabling researchers to detect drug effects that would be missed entirely by conventional statistical tests, finds ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.